

Science and Technology Facilities Council

Beam stacking experiment proposal at KURNS 19/05/22

J.B. Lagrange On behalf of IBG, ISIS, RAL, STFC

Experiment goals

This experiment aims to answer 2 questions for FETS-FFA:

stacking at top energy?

beam stacking?

Note: "without beam loss" to be defined later (e.g. 5%, 1%, or 0.1%).

- Whow many protons can we accumulate without beam loss by beam

Whow many protons can we capture and extract without beam loss after

Main Ring parameters

Radius

RF frequency

Revolution time

Beta (11 MeV, 18 MeV)

Beta (11 MeV, 47 MeV)

Beta (0.4 GeV, 1.2 GeV)

4.54 m

1.6 ~ 5.2 MHz

 $0.625 \sim 0.192 \ \mu s$

0.1518, 0.1931 (ratio=1.27)

0.1518, 0.3052 (ratio=2.01)

0.7131, 0.8986 (ratio=1.26)

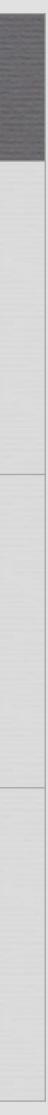
Experiment proposal

- 1. Coasting beam characterisation: 1 week
- without beam): 1 week
- 3. Measurement of stacked beam: 1 week

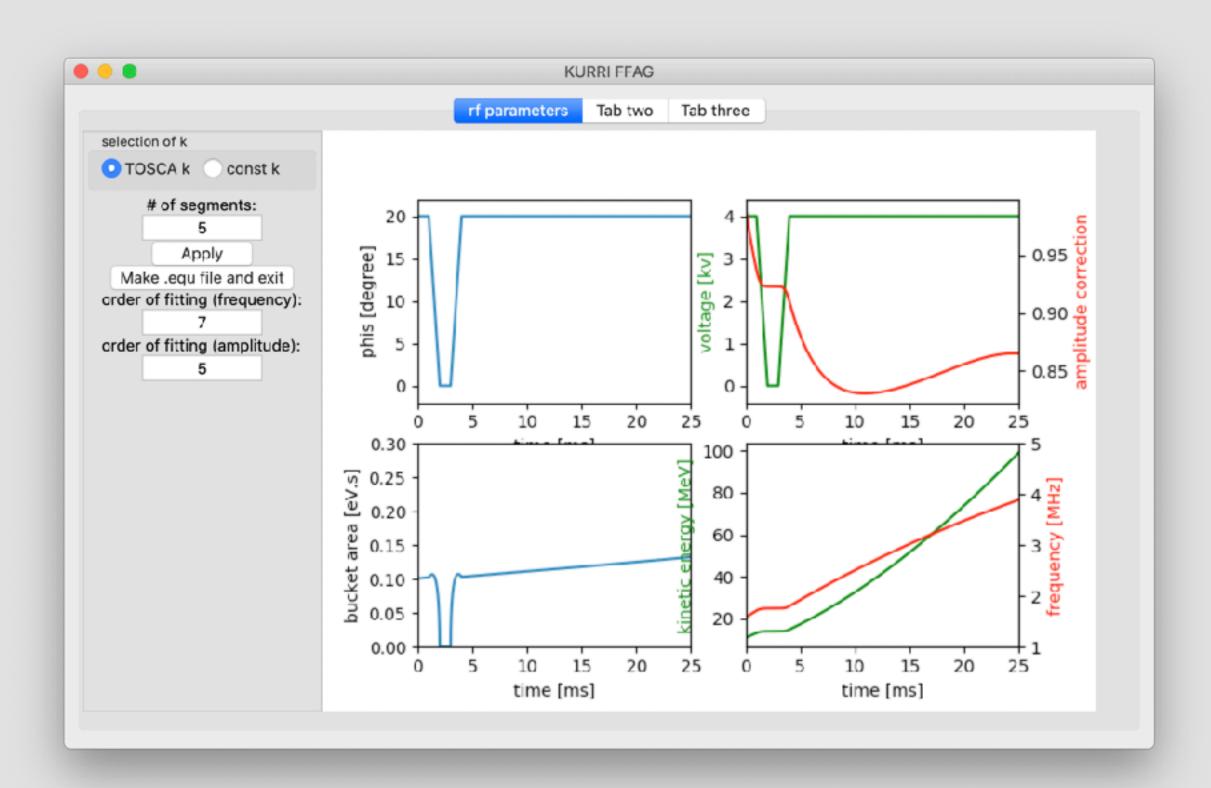
2. Measurement of interference of empty bucket (accelerating RF

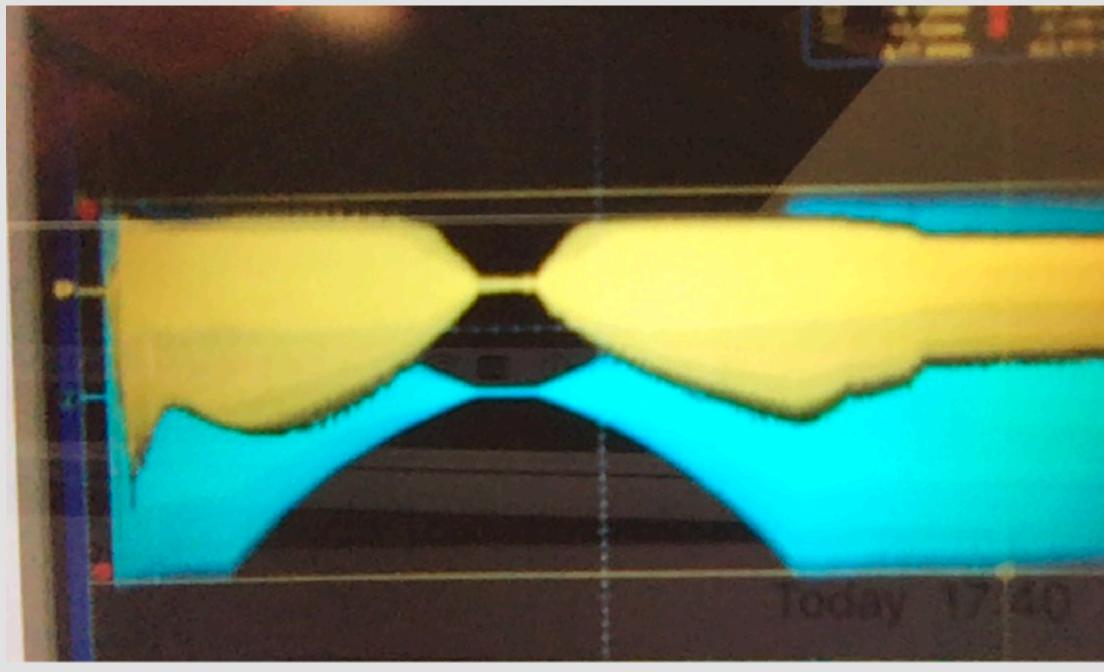
First stage: One bunch only

Accelerate 1st bunch to final energy E1
Debunch adiabatically the 1st bunch
Characterise the coasting beam
Recapture the coasting beam, measure it, redebunch it



One bunch only


Subject	Preparation	Measurements
Debunch adiabatically the 1st bunch	• Determine RF profile (frequency and voltage) to minimise $\Delta p/p$ after debunch	 ∆p/p measurement Transverse beam profile measurement
Rebunch the coasting beam	• Determine RF profile (frequency and voltage) to minimise longitudinal emittance	 Beam intensity measurement Longitudinal tomography measurement Transverse beam profile measurement
Repeat debunch and rebunch process	• Same as above	 Beam intensity, Δp/p increase at debunch, longitudinal emittance increase at rebunch and transverse beam profile increase vs. the number of process



RF script and bunch monitor signal (2019)

yellow: bunch monitor blue: RF signal

Second Stage: Empty bucket

Accelerate 1st bunch to final energy E1
Debunch adiabatically the 1st bunch
Measure the interference of the accelerating RF (no beam) on the coasting beam

Coasting beam and empty bucket

Subject	Preparation	Measurements
After debunching at E1, increase RF voltage with frequency at several points between injection and E1.	 Simulation to see how the coasting beam is affected. When E1 is increased and RF frequency ratio approach 2, how quickly interference grows? 	 Δp/p measurement vs time (time scale should be determined by simulation) Transverse beam profile measurement
Increase the energy of an empty bucket and adiabatically decrease voltage as if the beam is accelerated and debunched.	• Simulation to see how the coasting beam is affected.	 Δp/p measurement Transverse beam profile measurement
(optionally) rebunch the coasting beam	• Same with one bunch	 Beam intensity measurement Longitudinal tomography measurement Transverse beam profile measurement

Third stage: Stacked beam

Accelerate 1st bunch to final energy E1 Debunch adiabatically the 1st bunch Inject & accelerate a second bunch to E2<E1</p> Debunch adiabatically the second bunch Characterise the coasting beam Recapture the resulting total beam Measure the beam

Stacked beam

Subject	Preparation	Measurements
Increase the energy of the 2nd beam and adiabatically decrease voltage.	• Simulation to see how the coasting beam is affected and the 2nd beam is added.	 Δp/p measurement Transverse beam profile measurement
Rebunch the coasting beam from the 2 accelerations.	• Determine RF profile (frequency and voltage) to minimise longitudinal emittance	 Beam intensity measurement Longitudinal tomography measurement Transverse beam profile measurement
Repeat debunch and rebunch process (similar to measurement with one bunch but different $\Delta p/p$)		 Beam intensity, Δp/p increase at debunch, longitudinal emittance increase at rebunch and transverse beam profile increase vs. the number of process

Questions/preparations

Simulation study to optimise RF profile for debunch, rebunch and merging bunches

AWG input: Current RF system?

Measurement of momentum spread?

Determination of E2?

Schedule

Need a few months for preparation

Reasonable date would be next winter (January, February 2023)

