KURNS meeting on 13 Oct. 2022

Longitudinal Schottky Analysis on Coasting Beam

ΔP/P Measurement

- ❖ A Faraday Cup measures coasting beam size when the beam is accelerated by empty RF bucket.
	- The data includes a beam size information.
- ❖ Schottky Analysis gives direct measurement of ∆P/P.

Beam Parameters obtained from Schottky Signal Analysis

Longitudinal Schottky Spectrum delivers:

 \triangleright Mean revolution frequency *f*₀, incoherent spread in revolution frequency Δ*f* / *f*₀ \Rightarrow in accelerator physics: mean momentum *p*₀, momentum spread ∆*p* / **p**₀

*IBIC2017, Tutorial on Beam Measurements using Schottky Signal Analysis: https://accelconf.web.cern.ch/ibic2017/talks/mo2ab1_talk.pdf

Longitudinal Schottky Analysis: 1st Step

Schottky noise analysis is based on the power spectrum for consecutive passage of the **same** finite number of particles

Particle 1 of charge *e* rotates with $t_1 = 1/f_0$: Current at pickup $I_1(t) = e f_0 \cdot \left[\sum_{h=-\infty}^{\infty} \delta(t-ht_0) \right]$ h = $-\infty$ $\Rightarrow I_1(f) = ef_0 + 2ef_0 \cdot \sum_{h=1}^{\infty} \delta(f - hf_0)$

Particle 2 of charge *e* rotating with $t_2 = 1/(f_0 + \Delta f)$: Current at pick-up $I_2(t) = e f_0 \cdot \overline{\sum_{h=-\infty}^{\infty}} \delta(t - ht_2)$ h = $-\infty$ $\Rightarrow I_2(f) = ef_0 + 2ef_0 \cdot \sum_{h=1}^{\infty} \delta(f - h \cdot [f_0 + \Delta f])$

Important result for 1st step:

- The **entire** information is available around all harmonics
- The distance in frequency domain scales with *h*⋅∆*f*

Averaging over many particles for a coasting beam:

Assuming *N* randomly distributed particles characterized by phase θ_1 , θ_2 , θ_3 ... θ_N with **same** revolution time $t_0 = 1/f_0 \Leftrightarrow$ same revolution frequency f_0

The total beam current is:
$$
I(t) = ef_0 \sum_{n=1}^{N} \cos \theta_n + 2ef_0 \sum_{n=1}^{N} \sum_{h=1}^{\infty} \cos(2\pi f_0 ht + h\theta_n)
$$

N **2** For observations much longer than one turn: average current $\langle I \rangle_h = 0$ for each harm. $h \neq 1$ **but** In a band around **each** harmonics **h** the rms current $I_{rms}(h) = \sqrt{\langle I^2 \rangle_h}$ remains:

$$
\langle I^2 \rangle_{_h} = \left(2ef_0 \sum_{n=1}^N \cos(h\theta_n) \right)^2 = (2ef_0)^2 \cdot (\cos h\theta_1 + \cos h\theta_2 + \dots \cos h\theta_N)^2
$$

$$
\equiv (2ef_0)^2 \cdot N \langle \cos^2 h \theta_i \rangle = (2ef_0)^2 \cdot N \cdot \frac{1}{2} = 2 e^2 f_0^2 \cdot N
$$
 due to the random phases θ_n

The power at each harm. *h* is: $P_h = Z_t \left\langle I^2 \right\rangle_h = 2 \, Z_t \, e^2 f_0^2 \cdot N$ $= Z_t \langle I^2 \rangle = 2 Z_t e^2 f_0^2$.

measured with a pickup of transfer impedance Z_t

Important result for 2nd step:

 The **integrated** power in each band is constant and ∝ *N* Remark: This random distribution is the connection to shot noise as described by W. Schottky in 1918

Pickup for Schottky Signals: Capacitive Pickup

A Schottky pickup are e comparable to a capacitive BPM:

- Typ. 20 to 50 cm insertion length
- high position sensitivity for transverse Schottky
- \triangleright Allows for broadband processing
- Linearity for position **not** important

Example: Schottky pickup at GSI synhrotron

i.e. above f_{cut} but below signal distortion \approx 200 MHz

Example: Schottky for HIT, Heidelberg operated as capacitive (mostly) or strip-line

Electronics for a typical broadband Pickup

Analog signal processing chain:

- \triangleright Sensitive broadband amplifier
- \triangleright Hybrid for sum or difference
- \triangleright Evaluation by spectrum analyzer

Enhancement by external resonant circuit :

- \triangleright Cable as $\lambda/2$ resonator
- \triangleright Tunable by capacitive diode
- \triangleright Typical quality factor Q ≈ 3 ... 10
- \Rightarrow resonance must be broader than the beam's frequency spread

Challenge for a good design:

- \triangleright Low noise amplifier required
- \triangleright For multi stage amplifier chain: prevent for signal saturation

Choice of frequency range:

- \triangleright At maximal pickup transfer impedance
- \triangleright Lower $f \Rightarrow$ higher signal
- \triangleright Higher $f \Rightarrow$ better resolution
- \triangleright Prevent for overlapping of bands

Example: Coasting beam at GSI synchrotron at injection E_{kin} = 11.4 MeV/u \Leftrightarrow β = 15.5 %, harmonic number h = 119

KURNS hFFA:

$$
\frac{\Delta P}{P_0} = -\frac{1}{\eta} \frac{\Delta f_h}{hf_0}
$$

\n
$$
\Delta f_h = -\eta h f_0 \frac{\Delta P}{P_0}
$$

\n
$$
= -\left(\frac{1}{k+1} - \frac{1}{\gamma_0^2}\right) h f_0 \frac{\Delta P}{P_0}
$$

Abstract

Assuming that $\Delta P/P$ =0.005, $f0=2.985$ MHz and h=1 at 50MeV,

Application for coasting beam diagnostics:

- **Injection: momentum spread via** $\frac{\Delta p}{n}$ p_{0} $= \mathbf 1$ $\frac{1}{\eta}$. Δf_h $h f_0$ as influenced by re-buncher at LINAC $\frac{1}{\sigma}$ as influenced by re-buncher at Link in the upload line menu. T_{tot} include it includes the include it in your document. Use the figure environment. Use the figure environment.
- \triangleright Injection: matching i.e. f_{center} stable at begin of ramp and the caption community community community α number and a caption to your figure 1 in Figure 1 in Figure
- \triangleright Dynamics during beam manipulation e.g. cooling
- ρ Relative current measurement for low current below the dc-transformer threshold of $\approx 1\mu A$ s_{S} and the account of the contract or $\frac{1}{2}$ μ .