KURNS meeting on 13 Oct. 2022

Longitudinal Schottky Analysis on Coasting Beam

E. Yamakawa

ΔP/P Measurement

- * A Faraday Cup measures coasting beam size when the beam is accelerated by empty RF bucket.
 - * The data includes a beam size information.
- * Schottky Analysis gives direct measurement of $\Delta P/P$.

Beam Parameters obtained from Schottky Signal Analysis

GSİ

Longitudinal Schottky Spectrum delivers:

- > Mean revolution frequency f_o , incoherent spread in revolution frequency $\Delta f / f_o$
 - \Rightarrow in accelerator physics: mean momentum p_o , momentum spread $\Delta p / p_o$

*IBIC2017, Tutorial on Beam Measurements using Schottky Signal Analysis: https://accelconf.web.cern.ch/ibic2017/talks/mo2ab1_talk.pdf

Longitudinal Schottky Analysis: 1st Step

Schottky noise analysis is based on the power spectrum for consecutive passage of the **same** finite number of particles

Particle 1 of charge *e* rotates with $t_1 = 1/f_0$: Current at pickup $I_1(t) = ef_0 \cdot \sum_{h=-\infty}^{\infty} \delta(t - ht_0)$ $\Rightarrow I_1(f) = ef_0 + 2ef_0 \cdot \sum_{h=1}^{\infty} \delta(f - hf_0)$

Particle 2 of charge e rotating with $t_2 = 1/(f_0 + \Delta f)$: Current at pick-up $I_2(t) = ef_0 \cdot \sum_{h=-\infty}^{\infty} \delta(t - ht_2)$ $\Rightarrow I_2(f) = ef_0 + 2ef_0 \cdot \sum_{h=1}^{\infty} \delta(f - h \cdot [f_0 + \Delta f])$

Important result for 1st step:

- > The **entire** information is available around all harmonics
- ➤ The distance in frequency domain scales with h·Δf

Averaging over many particles for a coasting beam:

Assuming **N** randomly distributed particles characterized by phase θ_1 , θ_2 , θ_3 , \dots , θ_N with same revolution time $t_0 = 1/f_0 \Leftrightarrow$ same revolution frequency f_0

The total beam current is:
$$I(t) = ef_0 \sum_{n=1}^N \cos \theta_n + 2ef_0 \sum_{n=1}^N \sum_{h=1}^\infty \cos(2\pi f_0 ht + h\theta_n)$$

For observations much longer than one turn: average current $\langle I \rangle_h = 0$ for **each** harm. $h \neq 1$ **but** In a band around **each** harmonics h the *rms* current $I_{rms}(h) = \sqrt{\langle I^2 \rangle_h}$ remains:

$$I^{2}\rangle_{h} = \left(2ef_{0}\sum_{n=1}\cos(h\theta_{n})\right) = (2ef_{0})^{2} \cdot (\cos h\theta_{1} + \cos h\theta_{2} + ... \cos h\theta_{N})^{2}$$

$$\equiv (2ef_0)^2 \cdot N \left\langle \cos^2 h \theta_i \right\rangle = (2ef_0)^2 \cdot N \cdot \frac{1}{2} = 2 e^2 f_0^2 \cdot N \text{ due to the random phases } \theta_n$$

The power at each harm. *h* is: $P_h = Z_t \langle I^2 \rangle_h = 2 Z_t e^2 f_0^2 \cdot N$

measured with a pickup of transfer impedance Z_t

Important result for 2nd step:

➤ The integrated power in each band is constant and ∝ N Remark: This random distribution is the connection to shot noise as described by W. Schottky in 1918

Pickup for Schottky Signals: Capacitive Pickup

A Schottky pickup are e comparable to a capacitive BPM:

- Typ. 20 to 50 cm insertion length
- high position sensitivity for transverse Schottky
- Allows for broadband processing
- Linearity for position **not** important

Example: Schottky pickup at GSI synhrotron

Example: Schottky for HIT, Heidelberg operated as capacitive (mostly) or strip-line

Electronics for a typical broadband Pickup

Analog signal processing chain:

- Sensitive broadband amplifier
- Hybrid for sum or difference
- Evaluation by spectrum analyzer

Enhancement by external resonant circuit :

- > Cable as $\lambda/2$ resonator
- Tunable by capacitive diode
- > Typical quality factor $Q \approx 3 \dots 10$
- ⇒ resonance must be broader than the beam's frequency spread

Challenge for a good design:

- Low noise amplifier required
- For multi stage amplifier chain: prevent for signal saturation

Choice of frequency range:

- > At maximal pickup transfer impedance
- $\succ \text{ Lower } \boldsymbol{f} \Rightarrow \text{ higher signal}$
- ➢ Higher f ⇒ better resolution
- Prevent for overlapping of bands

Example: **Coasting** beam at GSI synchrotron at injection $E_{kin} = 11.4 \text{ MeV/u} \Leftrightarrow \beta = 15.5 \%$, harmonic number h = 119

KURNS hFFA:

$$\begin{split} \frac{\Delta P}{P_0} &= -\frac{1}{\eta} \frac{\Delta f_h}{h f_0} \\ \Delta f_h &= -\eta h f_0 \frac{\Delta P}{P_0} \\ &= -\left(\frac{1}{k+1} - \frac{1}{\gamma_0^2}\right) h f_0 \frac{\Delta P}{P_0} \end{split}$$

Assuming that Δ P/P=0.005, f0=2.985MHz and h=1 at 50MeV, Δ f1 = 11.7kHz (k=7.5).

Application for coasting beam diagnostics:

- > Injection: momentum spread via $\frac{\Delta p}{p_0} = -\frac{1}{\eta} \cdot \frac{\Delta f_h}{h f_0}$ as influenced by re-buncher at LINAC
- > Injection: matching i.e. f_{center} stable at begin of ramp
- Dynamics during beam manipulation e.g. cooling
- \blacktriangleright Relative current measurement for low current below the dc-transformer threshold of $\approx 1 \mu A$