

Science and Technology Facilities Council

J.B. Lagrange On behalf of IBG, ISIS, RAL, STFC

Beam stacking experiment at KURNS 08/09/22

Momentum spread measurement

 Bunched beam: longitudinal tomography
© Coasting beam: measure of beam size, with known dispersion • Possible if $\Delta p/p \cdot D >>$ beam size Emittance of the beam after injection (i.e. ~100 hits on foil)?

Beam size estimate

Confirmation with Jordan's thesis?

(E. Yamakawa , 21/07/22)

Beam size ~±5 mm

JB Lagrange 3

Beam size from transverse emittance

Emittance change from foil hits:

• Graphite foil $(0.1 \mu m, L_R=42.7)$, 100 hits, so total length 10 μm

• If $\varepsilon_x = 10 \cdot 10^{-6}$ m, beam size from transverse emittance ~ ± 3 mm

- $\frac{d\epsilon_x}{dz} \approx \frac{1}{2m_p} \frac{13.6^2}{L_R} \frac{\beta_x}{\beta_L^3 E_{\text{tot}}}$
- \bigcirc Proton beam at 12 MeV (*m_p*=938 MeV, *β_L*=0.158, *E*_{tot}=950 MeV), *β_x*≈1 m
- \odot Change of emittance of 6.2 · 10⁻⁹ m << initial emittance ~10 · 10⁻⁶ m?

JB Lagrange

Beam size from momentum spread

Momentum spread from RF bucket size: $\Delta p/p \approx \pm 0.005$

D = 0.53 m,

If $\Delta p/p \sim \pm 0.005$, beam size from momentum spread $\sim \pm 3$ mm

 $\Delta p/p$

Consistent with measurement

(D. Kelliher, IPAC19)

$$\times D \approx \sqrt{\epsilon\beta}$$

JB Lagrange

