

KURNS beam stacking

Shinji Machida
UKRI/STFC Rutherford Appleton Laboratory

26 August 2022 KURNS beam stacking

Momentum spread measurement with phase displacement idea

- Place a scraper outer edge of the beam.
- Start phase displacement (acceleration).
- Accelerated particles are scraped and beam loss signal appears.
- Repeat phase displacement (acceleration) until beam loss signal disappears.
- From the voltage and synchronous phase, we know energy gain per one sweep phase displacement.
- Energy or momentum spread is [the number of sweep] x [energy gain per sweep]?

Energy gain by phase displacement (acceleration)

- Synchronous energy of an empty bucket decreases from 11.5 MeV.
 - RF voltage = 4 kV per turn
 - Synchronous phase = -10 degrees
- Area of an empty bucket.

$$B = 16\sqrt{\frac{\beta^2 EeV}{2\pi\omega_0^2 h|\eta|}}\alpha\left(\phi_s\right)$$

- $B \sim 0.14 \text{ eV.s}$
- Energy gain per one sweep ~ 0.22 MeV

Comparable with dE of the beam.

Without scraper: 4 kV and 2 kV, phis=10 degree

Technology Facilities Council

With scraper: 4 kV and 2 kV, phis=10 degree

dp/p (dE) vs number of sweep

Initial dE=0.24 MeV.

Acceleration dE~0.23 MeV with 4 kV. Acceleration dE~0.16 MeV with 2 kV.

- With 4 kV, 0.24/0.23 ~ 1. 1 sweep almost scrape all the particles.
- With 2 kV, $0.24/0.16 \sim 1.5$. 1.5 sweep is needed to scrape all the particles.

With lower voltage

8000

16000

Acceleration dE~0.08 MeV with 0.5 kV. Acceleration dE~0.057 MeV with 0.25 kV.

- With 0.5 kV, 0.24/0.08 ~ 3. 3 sweep almost scrape all the particles.
- With 0.25 kV, $0.24/0.057 \sim 4.2$. 4.2 sweep is needed to scrape all the particles.

No synchrotron oscillations

Unlike an acceleration within a bucket, there is no mixing of synchrotron oscillation.

- With synchrotron oscillations, all the particles should be lost when the beam is accelerated by a half of dE.
- This is not the case with phase displacement (acceleration).

Transverse beam size

• Whether horizontal beam size is dominated by either momentum spread or transverse emittance.

- As a function of energy gain, the loss due to scraper will be broader shape with relatively large transverse beam size.
- Still it should be possible to see the difference of dE.

Need to know

- Minimum voltage operated stably.
- Beam size from momentum spread and transverse emittance (JB).
- How long we can keep the beams?
- How much dp/p increase we expect (DK)? Is the measurement enough to detect it?

Very tentative travel plan

