

Science and Technology **Facilities Council**

Beam experiments in January 2023

Shinji Machida UKRI/STFC Rutherford Appleton Laboratory

6 January 2023 **KURNS** beam stacking

January experiment

- (horizontal) tune measurement with different initial amplitude [1~2 days]
- Preparation of March experiment
 - First try of step 1 experiment [~3 days]
 - Test of step 2 and 3 experiments [~1 days]
- Total ~ a week if allowed

Outline of the publication, my proposal

- Title?: Experimental verification of beam stacking in a FFA
- Introduction
 - momentum space is possible.
 - Only FFA can handle both acceleration and beam stacking in one ring.
 - (without beam loss).
- Momentum spread measurement
 - Schottky scan
 - Other methods
 - . . .

• FFA has wide momentum acceptance. Beam stacking of many acceleration cycle in

• Demonstration if it is feasible in practice, that is, momentum spread is under control

Outline of the publication, my proposal

- Main part
 - - What is the key parameter we must control?
 - Why optimised process is the best, in what sense?
 - - This is another source of deterioration of momentum spread.
 - frequency?
 - minimise the momentum spread of beams after stacking.
 - One sequence of optimised step1 and step2. See if it works.
 - Two beam stacking is enough for demonstration purpose.
 - Case of more than two is one of discussion items.

• Part 1: Optimisation of debunching and rebunching process for an accelerated beam. • Optimised rebunching is not necessarily the reverse process of debunching.

• Part 2: Influence of an accelerating bucket to a coasting beam circulating at the top energy.

• When it becomes significant? Acceleration frequency become a harmonic of revolution

• Part 3: How we combine a coasting beam and an accelerated beam together. How we can

First try of step 1 measurement

- Basically, measurement of momentum spread after debunching (and rebunching) process with different RF patterns. If we can see the difference.
- Test several RF patterns for debunching after (or including) acceleration up to a certain energy (~50 MeV).
- Test dp/p measurement methods, one or some of below.
 - Schottky measurement
 - Tomography
 - Transverse beam size
 - Phase displacement
 - Perturbation by an empty bucket
- Roughly ~3 days (excluding offline analysis)?

First try of step 1 measurement Schottky scan

- Accelerate up to ~50 MeV and debunch adiabatically according to David's RF programme
 - Start taking FAB signal after (or slightly before) RF becomes zero.
 - Set windows 1 ms, 5 ms, 10 ms and analyse frequency spectrum.
- - Repeat the same process above.
- FAB signal comes an array of beam current sampled every X ns.
 - Prepare analysis code to see frequency spectrum.

• Repeat the same analysis for data starting from 1 ms, 5 ms, 10 ms later since RF is off.

Accelerate up to ~50 MeV (final energy should be the same above) and switch off RF abruptly.

• Do we see the difference of dp/p as a result of adiabatic debunching and abrupt debunching?

What is X usually?

First try of step 1 measurement phase displacement and CR's proposal

- Repeat phase displacement acceleration with as low voltage as reasonable (0.25 kV?).
- Measure beam loss at scraper.
 - With larger dp/p, the beam loss signal lasts longer.

- Record bunch monitor signal in the process of empty bucket crossing.
 - of bunch monitor signal.

Science and Technology **Facilities** Council

• Set the scraper position so that the first crossing does not cause beam loss, only appearance

Whether timing of bunch monitor signal is different for small and large dp/p beams.

First try of step 1 measurement AWG script

- AWG script based on David's RF programme. Not ready yet.
- Is script running at KURNS?

Example from 2019 experiment

First try of step 1 measurement tomography of debunching process

• Any progress so far?

Step 1: One bunch only

Subject	Pı
Debunch adiabatically the 1st bunch	 Determine RF voltage) to mindebunch Fix energy for three).
Rebunch the coasting beam	 Determine RF voltage) to min emittance
Repeat debunch and rebunch process	Same above

reparation	Measurements
profile (frequency and nimise dp/p after debunching (two or	 dp/p measurement Feasibility and accuracy
profile (frequency and nimise longitudinal	 Beam intensity measurement Longitudinal tomography measurement
	 Beam intensity, dp/p increase at debunch, longitudinal emittance increase at rebunch vs. the number process

What would be the AWG requirements?

Test of step 2 and 3 measurements

- Acceleration of h=2 RF frequency.
 - How high energy h=2 RF can be used for acceleration.
 - Accelerate the beams up to ~ 50 MeV and debunch to see if feasible.
 - Acceleration of h=2 empty buckets.
- Test trigger
 - If the second trigger can add another acceleration cycle without disturbing the first beam.
- Roughly ~1 days (excluding offline analysis)?

Test of step 2 and 3 measurements h=2 acceleration

- Acceleration with h=1 RF up to ~50 MeV.
- Acceleration with h=2 RF up to ~50 MeV.
 - Do the same above.
- current reduction at some timing (momentum).
- Repeat with different phis.
 - h=1 and 2.

• By integrating bunch signal, measure beam current (AC component) as a function of time.

Compare beam current vs time for h=1 and 2. Acceleration with h=2 may have significant beam

• Assume that ordinary operation uses phis=20 degree. Try 10, 30, ... degree and compare

Test of step 2 and 3 measurements trigger test

- Test trigger

 - of 2nd beam.
 - Synchronise the injection of 1st beam and 2nd beam. How?

 If the second trigger can add another acceleration cycle without disturbing the first beam. • AWG script composed of acceleration of 1st beam, debunching of 1st beam and acceleration

Step 2: One coasting beam and an empty bucket

Subject	P
After debunching at E1, increase RF voltage with frequency at several points between injection and E1.	 Simulation to beam is affect When E1 is in frequency rati quickly interfet
Increase the energy of an empty bucket and adiabatically decrease voltage as if the beam is accelerated and debunched.	 Simulation to beam is affect
(optionally) rebunch the coasting beam	 Same with on
Science and	1

reparation	Measurements
see how the coasting ted. creased and RF io approach 2, how erence grows?	 dp/p measurement vs time (time scale should be determined by simulation)
see how the coasting ted.	 dp/p measurement
ne bunch	 Beam intensity measurement Longitudinal tomography measurement

Step 3: One coasting beam and another accelerating beam

Subject	P
Increase the energy of the 2nd beam and adiabatically decrease voltage.	 Simulation to beam is affect added.
Rebunch the coasting beam from two acceleration.	 Determine RF voltage) to mi emittance
Repeat debunch and rebunch process (similar to measurement with one bunch but different dp/p)	

reparation	Measurements
see how the coasting ted and the 2nd beam is	 dp/p measurement
^r profile (frequency and nimise longitudinal	 Beam intensity measurement Longitudinal tomography measurement
	 Beam intensity, dp/p increase at debunch, longitudinal emittance increase at rebunch vs. the number process

Backups

Science and Technology Facilities Council

(horizontal) tune measurement purpose and idea

- Measure amplitude dependent tune shift.
- Tune measurement by turn-by-turn BPM.
- Difficult part is to control initial betatron amplitude.
 - Small amplitude tune should be measured by small oscillations excited with a shaker.
 - Can the extraction kicker be excited with different strength?
 - Kick angle is inversely proportional to the beam momentum with the same kicker strength. • Combined of two (at different beam momentum with different kicker strength) should give us
 - results which can be scaled.

(horizontal) tune measurement methods

- Accelerate the beams up to 2 different energy, e.g. 80 MeV and 100 MeV.
- Using the extraction kicker, excite a coherent oscillations.

 - Measure horizontal tune with several different kicker strength at 80 MeV and 100 MeV. Obtain amplitude dependent tune shift results at 80 MeV and 100 MeV.
 - The same strength of the kicker magnet gives 90% of coherent oscillations at 100 MeV compared with 80 MeV (black and red arrows below).

- How the gradient of amplitude dependent tune shift scales at 80 MeV and 100 MeV with known kicker strength.
 - If the geometrical dynamic aperture is independent of momentum, ...

(horizontal) tune measurement days necessary for data taking

- Is there any installation of equipment necessary?
 - BPM, extraction kicker, power supply, etc.
 - Vacuum breaking is involved?
- Measurement takes a day or two.
 - Do data taking in the early stage of two weeks period.
 - Offline analysis takes a few days.
 - If the results do not look convincing, do data taking again in the second week.
- Total 1~2 days (excluding offline analysis) depending on hardware preparation.

