Beam size and profile calculation
from bunch monitor data



Signal amplitude
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Start with the bunch monitor data from the scope. Find the time range where the
signal drops off (blue).

In each time interval of about a revolution period duration, subtract the maximum
from the minimum to get an amplitude (black points).

Perform moving window average calculated over 20 consecutive points to smooth
data (red curve). ’



Signal derivative

normalised signal
|
o
=]

15600 15800 16000 16200 16400

0.005 - I - - max gradient ||
: FWHM

— 100%

rate of signal change per us

16000 16200 16400

t (us)

15600 15800

* Find derivative of normalised smoothed signal data (red points, lower figure),
then window average a second time (black curve).

* Measure beam duration using the derivative of the data. Figure above shows
the FWHM of the signal derivative (cyan) and the time where the signal drops
to zero on either side of the maximum (magenta).
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Bunch crossing model
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Conversion to distance algorithm

Use table by Uesugi-san to convert time to momentum
Assume we know dispersion n,at some reference momentum p,. Assume we
also know the scaling index k and assume it is fixed over the momentum range.
In addition, assume the beam size doesn’t change during the signal fall off.
For every time and time increment At in bunch monitor data

» Find p and Ap from lookup table.

» Calculate dispersion at momentum p

K+l
n=n, [£]
Po

» Calculate closed orbit shift, Ar = nAp/p
» Repeat at every time step to incrementally find total closed orbit shift

over time range of interest

n
r= 2 Ar,
i=l1



Conversion to distance example
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Shape of signal derivative looks the same when plotted against distance rather than time
Momentum varies linearly with time in this case.
Grid spacing ratio between two points is given by
A _Mp AL, _py
Ax,  my p, Aty 1y p,
Ratio reaches 1-3% over the signal fall-off time range, in the cases looked at. 6



Signal fall-off duration and beam radius
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* No clear trend in variation of signal fall off duration with momentum.
* The resulting beam size tends to decline with momentum. The 100% beam
size appears to decline with 1/p, i.e. faster than adiabatic damping.



Beam distribution model
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The entire beam moves across the probe on a much
slower time scale (~500 turns) than betatron
oscillations (~3 turns).

The signal drop off at any time, is proportional to the
number of particles outside some amplitude (given by
the distance from the probe to the beam centroid).

It follows that the derivative of the bunch monitor
signal represents the number of particles within a ring
in phase space. In effect we are measuring the phase
averaged distribution as a function of amplitude.

In normalised phase space coordinates

F) = f(r.0)a0dr=2mrf (r.0)Ar

Note, this picture ignores the “hollow beam” case
where there is some region with no particles (or an
undetectable number) in the centre of the
distribution. 8



Gaussian distribution

* Assuming uncorrelated distributions in x,x’.
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* The distribution of amplitudes r=+x>+x" s given
by a chi distribution of order 2. Assuming o,=0,, the
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signal derivative

Radial profile calculation (1)

The origin below corresponds to the the beam centroid (closed orbit), i.e one is
moving outwards with increasing x.

The above statement relies on the assumption that there is no zero charge density
core which cannot be detected.

The radial profile f(r)) is found by dividing the signal derivative by the r coordinate
(black dots in lower subfigures). This sometimes results in spurious large values
near the origin.

Fit signal derivative with chi-distribution (red line). Dividing this distribution by the
r coordinate yields a Gaussian profile that can be compared with the data.

The results indicates an initially hollow radial profile which begins to fill in after
some momentum until it eventually approaches a Gaussian-like profile.
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radial profile f(r)

radial profile f(r)

Profile evolution (1)

* Similar profile evolution seen in all three probes (momentum
increases light yellow to dark red).

* For clarity, scale r-axis by momentum to conserve beam size
(lower figures)
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Hollow beam profile

Since the beam distribution may have a hollow core of unknown extent,
an arbitrary offset can be added to the radius data.

This offset acts to depress the distribution, particularly for low radii.

In the example below a 5mm offset is added. If the arbitrary offset is
unchanged with momentum, then the trend for increasing charge density
close to the origin persists.
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