RF acceleration with local k-index correction

2014. 02. 12 (3min) Tom Uesugi et al.

Fast loss at injection energy

Longitudinal loss?

Normal rf pattern

- 1. Assume Constant amplitude and accelerating phase
- Derive rf frequency pattern f(t) =(k-index = 7.6)
- 3. Apply rf pattern into the amplifier
- 4. Measure the gap voltage, which is not constant because of cavity impedance
- 5. AM correction on low-level rf

Designed k-index = 7.6 Slippage

Assumed V: 4 kV $\Phi: 30 deg$

k-index is not constant (imperfect scaling) in reality!

Local k-index in our FFAG MR

k-index is not constant of particle energy

(lower at lower energy region)

Improved pattern

- 1. Assume Constant amplitude and accelerating phase
- Derive rf frequency pattern f(t) =by simulation
- 3. Apply rf pattern into the amplifier
- 4. Measure the gap voltage amplitude, which is not constant because of cavity impedance
- 5. AM correction on low-level rf

Simulated K-value

Assumed V: 4 kV Φ: 30 deg

RF freq. pattern $V(t)=V0 \sin \Omega(t)$

Measured Gap voltage

AMed RF pattern $V(t)=V0(t) \sin \Omega(t)$

Frequency difference

Gap voltage (after AM)

Frequency pattern

Results

The initial beam loss has been improved.

Best Phi_s ; 20deg?

BEST

 Φ s = 20 deg, Beam-transport line was optimized,

SUMMARY

 Fast beam loss at injection energy was improved by correcting rf frequency pattern using simulated k(E).

 More precise correction should be done by measuring k(E).