

Chris Rogers, ASTeC, Rutherford Appleton Laboratory

Simulation Of ERIT in MAUS

- Can think of several interesting problems to tackle with ERIT
 - Charge exchange injection
 - Multiturn injection
 - Can we put a kicker in? ... no space
 - Can we use phase advance? ... ?
 - Ionisation Cooling
 - How far has parameter space been explored?
 - More diagnostics might be helpful?
 - Space charge effects
- Try to get a reasonable model of ERIT to explore feasibility
 - Start with magnet model
 - Custom field routines
 - Use GEANT4
 - Foil model is easy
 - Space charge becomes very hard

What is MAUS?

- MAUS is Muon Ionisation Cooling Experiment (MICE) tracking and reconstruction code
 - Geant4 bindings
 - Field map routines
 - Accelerator optics routines (fully 6D)
 - Accelerator physics post-processing routines in separate library (fully 6D)
 - No space charge
- Also
 - MICE detector reconstruction routines (probably not useful)
 - Any interest in modelling diagnostics?
 - Configuration management tools
 - Interface to external SQL database containing time indexed configuration (of MICE)
- First attempt to model ERIT
 - Fields modelled as superposition of multipoles
 - Material use Geant4 physics process model
 - Look at closed orbits, tune, Twiss parameters...

Comment on VCS

- My geometry files are stored in a version controlled repository
- Available to view at
 - http://bazaar.launchpad.net/~chris-rogers/erit-ffag/devel/files
- Checkout and edit using bzr vcs system like:
 - bzr checkout lp:~chris-rogers/erit-ffag/devel
 - At the moment I use bzr because that's what MICE use
 - svn etc are also fine
- The directories are structured in such a way that we can handle geometry definitions for multiple codes
- I want to make something that works like a code base i.e. we have geometry files with a bunch of tests to check that the geometry is reasonable

Field Model

- Model ERIT magnets as a sum of multipoles
- Tanh model for end fields
 - Can't do e.g. edge effects without explicitly tracking
 - Tanh model => exponential fall off at either end
- Sector magnet => put field on a constant radius of curvature
 - Don't include radius of curvature in field expansion
 - So some non-Maxwellianness creeps in (needs fixing)
- Control parameters
 - Field index, dipole field, magnet length
 - Constrained by lattice definition
 - Maximum multipole in field expansion
 - End field fall off

Multipole expansion

- Use power law expansion to write 1/r as a Taylor series
- Use multipoles for each element in the Taylor series
- Octupole doesn't really contribute much
 - Floating point precision issues
- Truncate series at sextupole order

End field length – off-orbit fields

- End field modelled with tanh fall off
 - $f(s) = tanh[(x+x_0)/\lambda]$
 - Centre length x0
 - End length λ
- Get balance between field quality and fringe fields
 - Too short => bad field in magnet centre

End field length – off-orbit fields

- End field modelled with tanh fall off
 - $f(s) = tanh[(x+x_0)/\lambda]$
 - Centre length x0
 - End length λ
- Get balance between field quality and fringe fields
 - Too short => bad field in magnet centre
 - Too long => bad field at magnet ends

- End field modelled with tanh fall off
 - $f(s) = tanh[(x+x_0)/\lambda]$
 - Centre length x0
 - End length λ
- Get balance between field quality and fringe fields

End field length – field expansion

Tracking Simulation

- Two particles shown 6.0 MeV and 6.3 MeV
- Momentum acceptance is generally not so good
- Couldn't find a closed orbit outside this energy range
- Fringe field length of 0.06 m

Tracking Simulation

Comments

- Momentum acceptance is too small
- Need to look at the field model
- Use midplane expansion?
 - Needs couple of weeks development time
 - Time is hard to come by
- Then look at multiturn injection, emittance growth etc
- Space charge?
 - Do we really want to use GEANT4? Or something else?
- Any interest in MAUS bureaucracy features
 - Configuration management, event display, diagnostics modelling, ...
 - Would need 1-2 man years to implement this for ERIT
 - Interface to EPICS
 - Build SQL DB
 - Make diagnostics models