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Part I: Oscillatory behavior of the tune




Oscillatory behavior of the tune

e “Is it possible to check
the oscillatory region
with different field map
interpolation order &
see if it changes the
result?”
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Interpolation method in Zgoubi

* |[n Zgoubi, there are b
Z

both 2D and 3D field |

map optical elements: g Z0
rEr
3D = “TOSCA”: only a 2nd = L /'Ugg/ o

—

order polynomial =1L &8
interpolation is available /'//'k/

itha 3 X 3 X 3 point
ri d S e d dervatives up to second order. The central node l}‘i_' thegnd (i = 5 =k =1)
g u . 15 the closest to the actual position of the particle.

The tracking results produced so far are based on this method.
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Interpolation method in Zgoubi

e 2D (POLARMES,...): three

types of polynomial

interpolation are

L UGN

provided:

- 2"d order polynomial
with, either a 3 X 3 point
grid ora 5 X 5 point grid

- 4% order polyomial with a
5 X 5 point grid.




2D vs 3D field map

» Converted the 3D

TOSCA field map into a

2D field map: the

magnetic field is only _

defined in the median

[ %
| N
N

* The results are
comparable.
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I 2D map: 2nd oraer poly with 3+ 3 ||)0int grid ——
3D map: 2nd order poly with a 3 # 3 * 3 point grid —s—
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=1t is quite accurate to use the 2D field map.
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2"d order vs 4t order interpolation
polynomial

* Changed the order of
the interpolation
polynomial. Almost no
change.

Q_{y}

* The oscillatory
behavior is still there.

This behavior could be

intrinsic to the map.

Q_{x}
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Scaling factor
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T T T
H 2D map: 2nd order poly with 3 * 3 point grid
3B o 2D map: 4th order poly with a 5 * 5 point grid —<— -
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= This oscillatory behavior is more related
to the horizontal tune oscillation.

Since Q2 =~ k + 1, where k is the scaling
factor. Plotting k as a function of R, shows
that k obeys to the same oscillatory
behavior.

Average Scaling factor k
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The average variation of the field as a function of R, which is imposed by the field map,
seems to be responsible for this oscillatory behavior. A higher mesh size would help?
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Part Il: Space charge simulations




Transverse particle equations of

motion
Courtesy S. Lund
p ('}‘b ﬁb)" N | B q @d) USPAS 2015
+ r 4+ Kk(s)r = 5
(760) CmAR 622 O
(76/0) g 0¢
Yy (sl = - 5 5
(765) ?’?’?""/b 5bf‘ Y
qG G
H}(S) o = —
mYpOpc | Bp]
0B 0B, B, myp e
G=FE=7L="  [B=
Oy Ox T q
Now assuming that we have a uniform B d_@ - A L
density elliptical beam in a periodic or TED (frm + ?“y)'r‘m
focusing lattice, we can calculate the free 8(f) A\ :
space self-field solution within the beam: J
3y ey (T2 + Ty)Ty
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Linear Space Charge Correction term
to the Hill’'s equation

- QQ B
2(s) + < k.(s8) — > x(s) = 0
A e TN N B TR )
) 20 \
I
Y (8) + S Ky(8) — e y(s) =0
BV e @ [
Dimensionless Perveance Q Q gA t
= ‘ = cons
2meqmey; 37 ¢
yll
1) In order to solve for x(s), one has to Elliprical N
know the beam radii r,(s) and r,(s). — ;—.
density n
2) If we cut the magnet into thin slices, T

we may assume that the beam radii do
not change much within each slice.



Bz (Gauss)
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Median plane Field map of DFD triplet cut into 4 slices
the KURRI 150 MeV scaling

FFAG

e |t was found that by tweaking few parameters in the analytical model FFAG, it is
possible to slice the magnet into thin elements.

e With the field map, the results is straightforward.

A routine was implemented to achieve this.



RMS calcul

Radial Beam Size (cm)
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Elliptical

ations: "
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At the entrance of each element (slice) the

KV equivalent beam parameters are
1
r,=2<x?*>2 £, =4
1
_ 2 <5 _
ry=2<y*>2 &, =4

Requires lots of computation time: optimizing the
number of slices may be a good investigation.

computed:
1

<x?><x'?>—<xx' >|?
1
<y2><y?>—<yy >|?
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Space charge linear kick

Once the beam radii for each slice are computed, we can
apply the space charge linear kick:

For each particle within the beam, the angles x” and y’ are
corrected after each integration step.

e

: 20
Ax" = x.As These equations are valid
(Tx+ry)rx only inside the beam: the
self electric field is non-
, ZQ linear outside the beam. So
Az" = (T 17 )T Y. As this model cannot describe
— X yry the halo.



Validation/tests on-going

eConsidering a drift, the transverse equations of motion simplify to:

n ZQ
J— x =
T (1 + ry)
n ZQ O
y - y =
ry(rx + ry)
e If we take: x(s =0) = x,
x'(s=0)=0

Then, the solution of this equation is:

(s) = h( 20 )é
X\S —XOCOS rx(rx+ry) S

1.5

" No Spaclc Charge I

With Space Charge (1 slice)
Analytical Formula (1 slice)

1 F

05 r

0 l
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If we generate an initial distribution such as

x;(s=0)=0 Vi then,
‘ 1
2

1. (8) = x§*** cosh ( 20 ) S

Ty (rx + ry)
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Convergence of the space charge

calculation
1 I Slice
How many slices | 3 Slices
_ 12 Slices
before obtaining a
numerical E o5 =
convergence of the = B 52
space charge 2 i3
. 05 F
calculation? .
5
-1.5 ! . L L :
0 10 20 30 40 60

= Optimization problem.

Path Length (cm)

70
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Adiabatic Damping

* Include the damping (acceleration) term in the
transverse equations of motion:

—  d’x (vBp)' , 1-n
+ X

+ x=0
ds* YbBp p?
——
d*z ’ n
_2+(Vb,8b) 2 +—z=0
— ds YvBp p
pdB p
R)x ——=—=——=k(R
And  n(R) ~ —Z—m =~ k(R)
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Adiabatic Damping

* The previous equations become:

e

S %

"+ x=20
dSz By p?
(Vb,gb) k(R) s =0
— dSZ Vb,Bb PR

Also, using the hard edge model it can be shown that % = const

P

= = aF > 0 for the F-magnet ; P

= = ap < 0 for the D-magnet
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Solving the z-equation of motion:

e Using the WKB (Wentzel-Kramers—Brillouin)
approximation, an approximate solution to this
equation is (coeff slowly changing in time):

x(s) = xgA(s)exp| f ik,(s)ds]

Solving for the vertical y- component, one obtain:

B k(R) k(R
k2 == = T are

1

AGs) = L _ VR x(ﬂf
VBovs k(DI Boyy  \K(R)
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Conclusions:
 Damping law for scaling FFAG:

(

1
By (k(R)\?
Snorm 0.4 R |a| X €

q \ _/

* For a KV beam, the space charge kick is:

~

s a
v o2 a k(R)\?
7ot (Tx +rz)rz moczygﬁbR ||
\_ _J

It seems that, compared to a synchrotron, the relativistic space charge effects in
scaling FFAG could be lower ..



Tests of the space charge module on
the KURRI 150 MeV FFAG

"FFAG' #START 3
20
5 30. 440.48836355 NMAG, AT=tetaF+2tetaD+2Atan(XFF/R0), RO
M 0.000 0. -0.4412832 0.239148 mag 0 : ACNT, dum, BO, K MAGNET 1
Ana ytlca I I lO e O 6.3 03. EFB 1 : lambda, gap const/var=0/.ne.0
4 ,1455 2.2670 -.6395 1.1558 0. 0. O.
4.7 0. 1.E6 -1.E6 1.E6 1.E6
6.3 03. EFB 2
t e 15 MeV KU RRI 4 -3.07033892e+00, 8.59656096e+00, -1.04829407e+01, 5.80500507e+00 0. 0. O.
-3.6 0. 1.E6 -1.E6 1.E6 1.E6
0. -1 EFE 3 : inhibited by 1op=0
M 0 0. 0. 0. 0. 0. 0. 0.
Illac Ine 0. 0. 0. 0. 0. 0.
65.465 0. -1.6151060 9.426756 mag 1 : ACNT, dum, BO, K MAGNET 2
8.3 03. EFB 1 : lambda, gap const/var=0/.ne.0
: 5 -4.12200913e-01  2.22904985e+00 -6.80512267e-01 1.23609453e-01 -7.87155179e-03 0. O.
“Ilp elllente +2.5 3.1 1.E6 -1.E6 1.E6 1.E6
6.3 03. EFB 2
4 -8.23066935e-01, 2.36019103e+00, -3.84298625e-01,  2.43560489e-01 0. 0. O.
: M -1.765 0. 1.E6 -1.E6 1.E6 1.E6
I n gou I . 0. -1 EFB 3 : inhibited by iop=0
0 o. 0. 0. 0. 0. 0. O.
0. 0. 0. 0. 0. 0.
15. 0. 3.400519, 7.707476 mag 2 : ACNT, dum, BO, K,dummies MAGNET 3
6.3 03. EFB 1
4 -4.13707399e-01,  2.14307057e+00, -4.26620705e-01,  1.70354587e-01 0. 0. O.
5.37 0. 1.E6 -1.E6 1.E6 1.E6
6.3 03. EFB 2
4 -4.13707399e-01,  2.14307057e+00, -4.26620705e-01,  1.70354587e-01 0. 0. 0.
-5.37 0. 1.E6 -1.E6 1.E6 1.E6
0. -1 EFB 3
0 o. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
Bz (Gauss) 23.535 0.0 -1.615106, 9.426756 mag 3 : ACNT, dum, BO, K MAGNET 4
200 T T T T T T T 20000 6_3 03_ EFB ‘|
4 -8.23066935e-01, 2.36019103e+00, -3.84298625e-01, 2.43560489e-01 0. 0. O.
150 T 15000 1.765 0. 1.E6 -1.E6 1.E6 1.E6
100 L | 10000 2.3 3. EFB 2
5  -4.12200913e-01  2.22904985e+00 -6.80512267e-01 1.23609453e-01  -7.87155179e-03 0. 0.
50 L | 5000 -2.5 3.1 1.E6 -1.E6 1.E6 1.E6
~ 0 0. -1 EFB 3
E ok i 0 o. 0. 0. 0. 0. 0. O.
5 5000 0. 0. 0. 0. 0. 0.
50 - i 30. 0. -0.4412832 0.239148 mag 4 : ACNT, dum, BO, K DAGNET 5
-10000 6.3 03. EFB 1 : lambda, gap const/var=0/.ne.0
-100 + 4 15000 4 -3.07033892e+00, 8.59656096e+00, -1.04829407e+01,  5.80500507e+00 0. 0. O.
- 3.6 0. 1.E6 -1.E6 1.E6 1.E6
2150 F B 20000 6.3 03. EFB 2
4 ,1455 2.2670 -.6395 1.1558 0. 0. O.
-200 N R E— -25000 -4.7 0. 1.66 -1.E6 1.E6 1.E6
250 300 350 400 450 500 550 600 650 0. 1 EFB 3 : Inhibited by iop=0
0 o. 0. 0. 0. 0. 0. 0.
X (cm) 0. 0. 0. 0. 0. 0.
2 2 125. KIRD anal/num (=0/2,25.4), resol(mesh=step/resol)



Laslett tune shift

* We investigate the change in betatron oscillation
frequency due to space charge forces. The linear
Laslett tune shift is given by:

1 e 20 —> AQ, a
AQy = 4 Bx () n ds X B2y3
T J, (e + 1)
If the emittance is kept the
0.11 " Tracking | same for all energies
o1 L Analyﬁicg}l |
RIB"y) ——
0.09 \
=Tracking resultsare s 00 \
consistent withthe £ oo f
Scaling law of the : 006 | \\\ | Q=64 x1078
Laslett tune shift. 7 o00sy ~ | atinjection.
0.04 T~
0.02 : : ! : ‘ :
10 15 20 25 30 35 40 45

Kinetic Energy (MeV) 1 9



Dispersion effect:

Investigate the effect of dispersion in presence of space charge.

- k+1 o x k+1 X k+1
We know that: p=p0<—> =p0<° ) :p0<1+_>

To To To
X
zp0[1+(k+1)—] ; X K1y
To
mm) P PP Kt mm) pr D
= =~ X ~
Po Po To k+1

And more generally, it can be shown (by solving the inhomogeneous
x-equation of motion), that the dispersion function can be written
in the general form:

T,
[D ~ v_g ] where 1 is the average radius of the orbit of reference momentum p,
X

20



Dispersion effect

 The presence of space charge reduces the net focusing effect
which would increase the dispersion effect:
To To To

D =~ = = ; ov, KV 0
ngc (VxO — 5Vx)2 Vz ( 6Vx)2 * *

Thus, the dispersion function is modified due to the presence of

space charge by:
[ 5vx]
8D = 2D —=
Vx0
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Dispersion effect

1.4

T
From Tracking ——

1.3 _ From Tune shift formula _

Dispersion function shift delta_D {cm)

10 15 20 25 30 35 40 45
Kinetic Energy (MeV)

The formula above overestimates the shift of the dispersion function due to space charge.

This is expected, since there is an interplay between the dispersion and the space charge effects:
the dispersion increases the beam size = reduces the space charge kick
= the tune becomes less depressed than in the case with no dispersion.

The tracking contains this interplay between dispersion and tune shift and so is more accurate.
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