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Part I: Oscillatory behavior of the tune 
 



Oscillatory behavior of the tune 

• “Is    it  possible  to  check  
the oscillatory  region  
with  different  field  map  
interpolation  order  &  
see if it  changes  the  
result?” 
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Interpolation method in Zgoubi 

• In Zgoubi, there are 
both 2D and 3D field 
map optical elements: 
 

3D  =  “TOSCA”: only a 2nd 
order polynomial 
interpolation is available 
with a 3 × 3 × 3 point 
grid used. 

The tracking results produced so far are based on this method. 
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• 2D (POLARMES,...): three 
types of polynomial 
interpolation are 
provided: 

 - 2nd order polynomial 
with, either a 3 × 3 point 
grid or a 5 × 5 point grid 
 - 4th order polyomial with a 
5 × 5 point grid. 

Interpolation method in Zgoubi 
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2D vs 3D field map 

• Converted the 3D 
TOSCA field map into a 
2D field map: the 
magnetic field is only 
defined in the median 
plane.  

• The results are 
comparable. 

ÖIt is quite accurate to use the 2D field map. 
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2nd order vs 4th order interpolation 
polynomial 

• Changed the order of 
the interpolation 
polynomial. Almost no 
change. 

• The oscillatory 
behavior is still there. 

 
This behavior could be  
intrinsic to the map. 
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Scaling factor 

Since  𝑄௫ଶ   ≈ 𝑘 + 1 , where k is the scaling 
factor. Plotting k as a function of R, shows 
that k obeys to the same oscillatory 
behavior. 
 

Ö This oscillatory behavior is more related 
to the horizontal tune oscillation. 

The average variation of the field as a function of R, which is imposed by the field map, 
seems to be responsible for this oscillatory behavior. A higher mesh size would help? 
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Part II: Space charge simulations 



Transverse particle equations of 
motion 

Now assuming that we have a uniform 
density elliptical beam in a periodic 
focusing lattice, we can calculate the free 
space self-field solution within the beam: 

7 

Courtesy S. Lund 
USPAS 2015 



Linear Space Charge Correction term 
to  the  Hill’s  equation 

Dimensionless Perveance Q  

1) In order to solve for x(s), one has to 
know the beam radii 𝒓𝒙(𝒔)   and  𝒓𝒚(𝒔). 
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2) If we cut the magnet into thin slices, 
we may assume that the beam radii do 
not change much within each slice. 



Slicing 

•  It  was  found  that  by  tweaking  few  parameters  in  the  analytical  model  FFAG,  it  is  
possible to slice the magnet into thin elements. 
 
•  With  the  field  map,  the  results  is  straightforward. 
 
A routine was implemented to achieve this. 

❶ ❷ 

❸ 

❹ 

DFD triplet cut into 4 slices Median plane Field map of 
the KURRI 150 MeV scaling 
FFAG 
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RMS calculations: 

𝒓𝒙 𝒓𝒚 

𝒓𝒙 = 𝟐 < 𝒙𝟐 >
𝟏
𝟐 

𝒓𝒚 = 𝟐 < 𝒚𝟐 >
𝟏
𝟐 

At the entrance of each element (slice) the  
KV equivalent beam parameters are computed: 

𝜺𝒙 = 𝟒 < 𝒙𝟐 >< 𝒙ᇱ𝟐 >−< 𝒙𝒙ᇱ >
𝟏
𝟐 

𝜺𝒚 = 𝟒 < 𝒚𝟐 >< 𝒚ᇱ𝟐 >−< 𝒚𝒚ᇱ >
𝟏
𝟐 

Requires lots of computation time: optimizing the 
number of slices may be a good investigation. 10 



Space charge linear kick 

Once the beam radii for each slice are computed, we can 
apply the space charge linear kick: 

∆𝑥ᇱ =
2𝑄

(𝑟௫+𝑟௬)𝑟௫
𝑥. ∆𝑠 

∆𝑧ᇱ =
2𝑄

(𝑟௫+𝑟௬)𝑟௬
𝑦. ∆𝑠 

For  each  particle  within  the  beam,  the  angles  x’  and  y’  are  
corrected after each integration step. 

These equations are valid 
only inside the beam: the 
self electric field is non-
linear outside the beam. So 
this model cannot describe 
the halo. 
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Validation/tests on-going 
•Considering  a  drift,  the  transverse  equations  of  motion  simplify  to:   

𝑥" −
2𝑄

𝑟௫(𝑟௫ + 𝑟௬)
𝑥 = 0 

𝑦" −
2𝑄

𝑟௬(𝑟௫ + 𝑟௬)
𝑦 = 0 

•  If  we  take:   𝑥 𝑠 = 0 = 𝑥଴ 

𝑥′ 𝑠 = 0 = 0 

Then, the solution of this equation is: 

𝑥 𝑠 = 𝑥଴ cosh
2𝑄

𝑟௫ 𝑟௫ + 𝑟௬

ଵ
ଶ
𝑠  

If we generate an initial distribution such as 
 
𝑥௜ᇱ 𝑠 = 0 = 0      ∀𝑖    then,  

𝑟௫ 𝑠 = 𝑥଴௠௔௫ cosh
2𝑄

𝑟௫ 𝑟௫ + 𝑟௬

ଵ
ଶ
𝑠  

12 



Convergence of the space charge 
calculation 

How many slices 
before obtaining a 
numerical 
convergence of the 
space charge 
calculation? 

ÖOptimization problem. 

13 



Adiabatic Damping 

• Include the damping (acceleration) term in the 
transverse equations of motion: 

𝑑ଶ𝑥
𝑑𝑠ଶ

+
(𝛾௕𝛽௕)′
𝛾௕𝛽௕

𝑥ᇱ +
1 − 𝑛
𝜌ଶ

𝑥 = 0 

𝑑ଶ𝑧
𝑑𝑠ଶ

+
(𝛾௕𝛽௕)′
𝛾௕𝛽௕

𝑧ᇱ +
𝑛
𝜌ଶ

𝑧 = 0 
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𝑛 𝑅 ≈ −
𝜌
𝐵
𝑑𝐵
𝑑𝑅

= −
𝜌
𝑅
𝑘(𝑅) And  



Adiabatic Damping 

• The previous equations become: 

𝑑ଶ𝑥
𝑑𝑠ଶ

+
(𝛾௕𝛽௕)′
𝛾௕𝛽௕

𝑥ᇱ +
1 + 𝜌

𝑅 𝑘(𝑅)
𝜌ଶ

𝑥 = 0 

𝑑ଶ𝑧
𝑑𝑠ଶ

+
(𝛾௕𝛽௕)′
𝛾௕𝛽௕

𝑧ᇱ −
𝑘(𝑅)
𝜌𝑅

𝑧 = 0 
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Also, using the hard edge model it can be shown that  ఘ
ோ
= 𝑐𝑜𝑛𝑠𝑡 

ఘ
ோ
= 𝛼ி > 0 for the F-magnet    ;    ఘ

ோ
= 𝛼஽ < 0 for the D-magnet   



Solving the z-equation of motion: 
• Using the WKB (Wentzel–Kramers–Brillouin) 

approximation, an approximate solution to this 
equation is (coeff slowly changing in time):   

𝑥 𝑠 = 𝑥଴𝐴 𝑠 exp  [න 𝑖𝑘௫ 𝑠 𝑑𝑠] 

 Solving for the vertical y- component, one obtain:  

𝑘௭ଶ 𝑠 = −
𝑘 𝑅
𝜌𝑅

= −
𝑘 𝑅
𝛼𝑅ଶ  

𝐴 𝑠 =
1
𝛽௕𝛾௕

×
1
𝑘௭ 𝑠

=
𝑅

𝛽௕𝛾௕
×

𝛼
𝑘(𝑅)

ଵ
ସ
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Conclusions: 
• Damping law for scaling FFAG: 

 
 
 

• For a KV beam, the space charge kick is: 
 

𝜀௡௢௥௠ ∝
𝛽𝛾
𝑅

𝑘(𝑅)
𝛼

ଵ
ଶ
    × ε 

𝐾௭,ௌ஼ =
2𝑄

(𝑟௫+𝑟௭)𝑟௭
∝

𝑞λ
𝑚଴𝑐ଶ𝛾௕ଶ𝛽௕𝑅

𝑘 𝑅
𝛼

ଵ
ଶ

 

It seems that, compared to a synchrotron, the relativistic space charge effects in 
scaling FFAG could be lower  ..  
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Analytical model of 
the 150 MeV KURRI 
FFAG machine 
implemented 
in Zgoubi.  
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Tests of the space charge module on 
the KURRI 150 MeV FFAG 



• We investigate the change in betatron oscillation 
frequency due to space charge forces. The linear 
Laslett tune shift is given by: 

Laslett tune shift 

∆𝑄௫ =
1
4𝜋

න 𝛽௫ 𝑠
2𝑄

𝑟௫(𝑟௫ + 𝑟௬)
𝑑𝑠

஼

଴
 ∆𝑄௫ ∝

𝑅
𝛽ଶ𝛾ଷ

 

If the emittance is kept the 
same for all energies 

ÖTracking results are         
consistent with the 
Scaling law of the 
Laslett tune shift.  
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𝑄 ≈ 6.4   × 10ି଼  
at injection. 



Dispersion effect: 

𝑝 = 𝑝଴
𝑟
𝑟଴

௞ାଵ

= 𝑝଴
𝑟଴ + 𝑥
𝑟଴

௞ାଵ

= 𝑝଴ 1 +
𝑥
𝑟଴

௞ାଵ

     

≈ 𝑝଴ 1 + 𝑘 + 1
𝑥
𝑟଴

   

        
 

We know that: 
 

Investigate the effect of dispersion in presence of space charge. 
 

∆𝑝
𝑝଴

=
𝑝 − 𝑝଴
𝑝଴

≈
𝑘 + 1
𝑟଴

  𝑥 𝐷 ≈
𝑟଴

𝑘 + 1  
 

And more generally, it can be shown (by solving the inhomogeneous 
x-equation of motion),  that the dispersion function can be written 
in the general form: 

𝐷 ≈
𝑟଴
ν௫ଶ  

 where 𝑟0 is the average radius of the orbit of reference momentum 𝑝0 

;          𝑥 ≪ 𝑟଴ 

20 



Dispersion effect 
• The presence of space charge reduces the net focusing effect 

which would increase the dispersion effect: 

𝐷 ≈
𝑟଴
ν௫ଶ  

=
𝑟଴

ν௫଴ − 𝛿ν௫ ଶ =
𝑟଴

ν௫଴ଶ 1 − 𝛿ν௫
ν௫଴

ଶ 

 

≈
𝑟଴
ν௫଴ଶ

1 + 2
𝛿ν௫
ν௫଴

 

;         𝛿ν௫ ≪ ν௫଴ 

Thus, the dispersion function is modified due to the presence of 
space charge by: 

δ𝐷   ≈ 2𝐷
𝛿ν௫
ν௫଴
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Dispersion effect 

δ𝐷   ≈ 2𝐷
𝛿ν௫
ν௫଴
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The formula above overestimates the shift of the dispersion function due to space charge. 
 
This is expected, since there is an interplay between the dispersion and the space charge effects: 
the dispersion increases the beam size Ö reduces the space charge kick  
Ö the tune becomes less depressed than in the case with no dispersion. 

 
The tracking contains this interplay between dispersion and tune shift and so is more accurate.  



  

           Thank you 


