Multi-bunch acceleration experiment at KURRI FFAG (Simulation updated)

Takeichiro Yokoi(JAI)

Summary of status in the last meeting

- Multi-bunch acceleration was simulated in KURRI booster FFAG
- Up to 15 bunch acceleration was demonstrated, and found no significant beam loss.
- As the number of bunch increases, the required peak voltage drops compared to $(n_{bunch} \times V_{bunch})$. In 10 bunch case, ~ 1/2
- The saturated and deformed rf can still accelerated beam as long as the fraction of deformed rf is below 5% of total rf wave, though slight blow-up is observed.
- The dynamics of multi-bunch acceleration was not fully understood

Invariant longitudinal phase space

- In the previous longitudinal phase space plot (dE, ϕ), several ambiguity was included (central energy and actual ϕ_s due to the fitting error of rf pattern).
- (dE, ϕ) phase space is not invariant during acceleration (change of v_s , adiabatic dumping). \rightarrow To understand the dynamics, longitudinal phase space should be plotted in an invariant form.

Multi-bunch acceleration (number of bunch dependence)

In invariant longitudinal phase space, phase space motion in multi-bunch acceleration was plotted

1 bunch

6 bunch (bunch separation: 250 μsec) 15 bunch (bunch separation: 100 μsec)

Multi-bunch acceleration (2-bunch)

Varying the bunch separation in 2 bunch acceleration, longitudinal phase space

motion was examined.

As the

bunch separation : 250 μsec)

bunch separation : 100 μsec)

bunch separation : 70 μsec)

Energy

Multi-bunch acceleration(single particle motion)

- To understand the dynamics, single particle motion was investigated fixing the bunch separation and changing the number of bunch.
- The perturbation is linear and only adjacent 2 bunch mainly contribute the perturbation. (See the next slide)
- Dominant factor is the bunch separation. Thus, as long as the bunch separation is fixed, the dynamics is basically similar to the case of 3 bunch acceleration

Bunch separation dependence

- To examine the bunch separatio 0.3 0.2 dependence of perturbation of 0.1 synchrotron oscillation, radial distribution of small amplitude particle in invariant phase space 0.3 was adopted as a measure.
- The results supports that the adjacent bunches dominantly determined the perturbed synchrotron motion
- Basically, the dynamics can be explained with ordinary synchrotron oscillation.

Bunch separatio(mu sec)

Bunch separation dependence (2)

- As a measure of beam distortion, the maximum deviations of perturbed beam envelope was plotted as a function of amplitude.
- Below ΔT_{bunch} : 80µsec, bucket collision was observed. (consistent with the synchrotron oscillation theory)

Saturation effect

- By clipping the rf voltage, output saturation was introduced in the simulation
- Up to ~5% of rf error, beam can accelerated to the end without significant beam loss (similar study of 2-bunch motion was carried out)
- Above the error level, significant beam blow-up is observed
- The beam loss/blow-up mechanism is not clear at the moment.

Typical beam blow-up(10bunch, SF:0.5)

How efficient with an existing rf system?

- In the case of 10 bunch acceleration, peak rf voltage ~0.5 × n_{bunch} × V_{bunch}
 → it is equivalent to double the available rf voltage.
- Thus, if the peak voltage is the limiting factor, the acceleration rate of a bunch is 1/5 of single bunch acceleration in 10 bunch acceleration
- In result, the intensity is doubled (1/5 × 10 = 2)
- On the other hand, the rf power is 2/5 compared to single bunch acceleration. $(1/5^2 \times 10)$
- Thus, rf power wise, it is as expected factor of 10 more efficient [2 × 2 × (2/5)]

Cumulative fraction of normalized maximum voltage in rf bucket