Measuring ADS Foil Thickness

Chris Rogers, ASTeC, Rutherford Appleton Laboratory

Beam-based of the foil thickness

- Aim to use beam based measurement of foil thickness
- When the RF voltage is too low, no bunch is formed
- Use the voltage dependence of bunch synchronous phase as a cross-check

Bunch monitor signal

- Use AC bunch monitor signal turn-by-turn
- Calculate position of peaks in the signal relative to peaks in RF signal

Beam as a function of time – 3.59 V

Consider "ac" signal vs time

- Contours show beam intensity, normalised in each RF cycle
- Points show phase of the peaks vs time
- Points coloured blue are considered in RF phase calculation
 - Bounds given by 1D projection of bunch peaks
 - Bunch "phase" boundary is given by "half maximum" points
 - Bunch "phase" is given by the midpoint of the boundary

Beam as a function of time – 0.66 V

Looks like beam at 0.66 V is definitely captured

 Note that if there are subpeaks with size < half of the principle peak, these are ignored

Beam as a function of time – 0.23 V

Looks like beam at 0.23 V is definitely not captured

Beam drifts and then is lost

Phase

- Consider estimated bunch phase
 - Phase calculated as per slides 4-6
 - Attempt to fit the curve $\delta W = cV_0 \sin(\phi_s + d\phi)$
 - C=1 kV, dφ are calibration constants
- Fitting is very good when we include RF voltages
 >= 0.66
- Fitting is very poor when we include RF voltages
 <= 0.42
- Voltages <= 0.42 are not consistent with "bunching" hypothesis

Measured Foil Thickness

	Bethe Bloch	Geant 4.9.6 p02 QGSP model
Mean stopping power	$37.6 { m ~MeV~cm^2~g}$	$34.0 \ {\rm MeV} \ {\rm cm}^2 \ {\rm g}$
By inspection	6.11 - $17.6~\mu~{ m g/cm^2}$	6.76 - $19.4~\mu~{ m g/cm^2}$
Fit	$> 10.9 \; \mu \; { m g/cm^2}$	$> 12.1 \ \mu \ { m g/cm^2}$
Combined	10.9 - $17.6~\mu~{ m g/cm^2}$	12.1 - $19.4~\mu~{ m g/cm^2}$

Apply Bethe-Bloch model to estimate foil thickness

Do we measure beam energy → error?

Monte Carlo

v=1_0_dt=3790_99964859_tau=631_833274765_processes=mean_energy_loss

Note filamentation - compare with e.g. slide 4

10

RF signal

- Calculate position of peaks in the signal relative to peaks in RF signal
- Note RF frequency jitter
 - Is this analysis?
- Note RF peak voltage jitter ~ 0.005 V level
 - It's okay

Voltage: 0.16

Voltage: 0.31

Voltage: 0.41

Voltage: 0.52

Voltage: 0.66

