Space charge simulation update

Shinji Machida ASTeC, STFC Rutherford Appleton Laboratory I5 March 2012 KURRI-FFAG collaboration meeting

Code development

• Space charge module of Simpsons (space charge simulation code for synchrotron)

plus

Tracking module of S-code (FFAG tracking code).
 Simpsons-FFAG?

Space charge module

- n_s (=20) slices in longitudinal direction.
- Within a slice, <u>transverse</u> space charge is calculated using *r-theta* grids (cells) assuming no longitudinal variation.
- Density difference between cells in adjacent slice is used for <u>longitudinal</u> space charge.
- Model between 2.5-D and 3-D.

Optimization of tracking parameters (1)

- Number of space charge kicks per cell.
- Number of macro particles.
- Number of grids (cells in *r-z-theta*) for single bunch.

Optimization of tracking parameters (2)

- Number of space charge kicks per cell depends on space charge strength.
- Optimize it at moderate 1.05
 space charge strength.
- For simulation of higher current, increase # of kicks proportional to the strength.

red: 12 kicks per cell green: 24 kicks blue: 60 kicks pink: 120 kicks light blue: 600 kicks

Optimization of tracking parameters (3)

- Number of macro particles depends on number of grids (cells).
- It does not depends on space charge strength.
- Once we have reasonable number of particles per cell, keep the same parameters.

Optimization of tracking parameters (4)

- Rule of thumb is 10 macro particles per cell.
 - if there are grids 20 in r and z, 16 in theta,
 - 20 (r) x 20 (z) x 16 (theta) x 10 = 64,000

Macro particles of 20,000 and 200,000 give almost identical results for two intensity cases.

Optimization of tracking parameters (5)

- Choice of number of cell is arbitrary at the moment.
 - 20 (r) x 20 (z) x 16 (theta) seems to be the minimum from previous experience.

Space charge tune shift

 Gaussian distribution in 3-D (cut at 2.5 sigma), the maximum tune shift is

$$\Delta Q_y = -\frac{r_p n_t}{\pi (4\epsilon_{rms,un})(1 + \sqrt{\epsilon_x/\epsilon_y})\beta^2 \gamma^3} \frac{1}{B_f}$$

- $e_{y, rms, unnor} = 1.3 \times 10^{-6}$, $n_t = 0.6 \times 10^{11}$, $B_f = 0.42$ gives
 - Effectively, $e_x \sim 10 e_y$ because of dispersion function.
 - \Delta Qy=-0.142
- Tune in the model lattice is (1.816, 2.292).

Observation expected (1)

- Without error fields, only systematic resonances affect a beam.
 - $Q_y=2.0$ is not a systematic integer resonance.
- However, because of 8-fold symmetry, $Q_y=2.0$ is quarter resonance ($q_y=0.250$) in each cell.
 - Cell tune without tune shift is (0.227, 0.286).
 - q_y=0.250 is second order (?) parametric resonance. (Okamoto and Yokoya, NIM A482 p.51 2002).

Observation expected (2)

• Tune shift vs intensity

intensity in a ring	cell dq _y (q _y)	ring dQy (Qy)
0.6 x 1011	-0.018 (0.268)	-0.142 (2.150)
1.8 x 10 ¹¹	-0.053 (0.233)	-0.426 (1.866)
2.4 x 10 ¹¹	-0.071 (0.215)	-0.568 (1.724)
3.6 x 10 ¹¹	-0.107 (0.179)	-0.852 (1.440)

when maximum tune shift hits $q_y = 0.250$

Simulation results

Emittance growth (5th turn) vs intensity.

Summary

- New space charge simulation code for FFAG shows reasonable results.
- In the ideal lattice without errors, quarter resonance in each cell is the primary source of emittance growth.
- Next step
 - Multi-turn injection.
 - COD makes $Q_y=2.0$ another source of growth.
 - Comparison with growth from scattering.