Space charge simulation update (2)

Shinji Machida ASTeC, STFC Rutherford Appleton Laboratory 12 April 2012 KURRI-FFAG collaboration meeting

Contents

- Optimization of tracking parameters.
- Tracking on a perfect lattice.
- Tracking with alignment error.

Optimization of tracking parameters (1)

• Number of grids (r and z).

For example, 20-20-64-8:

- 20 grids in radial
- 20 grids in longitudinal
- 64 grids in azimuthal
- use 8 modes in azimuthal after Fourier decomposition.
- Number of modes used after Fourier decomposition.

Optimization of tracking parameters (2)

• Number of macro particles

Grids used

- 50 grids in radial
- 50 grids in longitudinal
- 64 grids in azimuthal

- use 8 modes in azimuthal after Fourier decomposition.

Space charge tune shift

 Gaussian distribution in 3-D (cut at 2.5 sigma), the maximum tune shift is

$$\Delta Q_y = -\frac{r_p n_t}{\pi (4\epsilon_{rms,un}) \frac{1+\sqrt{e_x/e_y}}{2} \beta^2 \gamma^3} \frac{1}{B_f}$$

- $e_{y, rms, unnor} = 6.3 \times 10^{-6}$, $n_t = 3 \times 10^{11}$, $B_f = 0.42$ gives
 - Effectively, $e_x \sim 4 e_y$ because of dispersion function.
 - \Delta Qy=-0.391
- Tune in the model lattice is (1.816, 2.292).

Intensity dependence

• Tune shift vs intensity

intensity in per bunch	cell dq _y (q _y)	ring dQy (Qy)
2 x 10 ¹⁰	-0.020 (0.267)	-0.156 (2.136)
3.5 x 10 ¹⁰	-0.034 (0.252)	-0.274 (2.018)
5 x 10 ¹⁰	-0.049 (0.238)	-0.391 (1.900)
7 x 10 ¹⁰	-0.069 (0.218)	-0.548 (1.744)

when maximum tune shift hits $q_y = 0.250$

when coherent tune shift hits $q_y = 0.250$.

Perfect lattice (1)

• Number of macro particles

intensity in per	cell dq _y (q _y)	ring dQy (Qy)
2 x 10 ¹⁰	-0.020 (0.267)	-0.156 (2.136)
3.5 x 10 ¹⁰	-0.034 (0.252)	-0.274 (2.018)
5 x 10 ¹⁰	-0.049 (0.238)	-0.391 (1.900)
7 x 10 ¹⁰	-0.069 (0.218)	-0.548 (1.744)

Almost no intensity dependence.

Simply shows initial mismatch is filled with different time scale (tune spread).

Perfect lattice (2)

- Last time, I looked at only the first 5 turns (40 cells).
- "observation of parametric resonance at qy=0.25" may be wrong.

With alignment error (1)

• COD with alignment error of +/- 2 mm.

With alignment error (2)

• Number of macro particles

intensity in per	cell dq _y (q _y)	ring $dQ_y(Q_y)$
2 x 10 ¹⁰	-0.020 (0.267)	-0.156 (2.136)
3.5 x 10 ¹⁰	-0.034 (0.252)	-0.274 (2.018)
5 x 10 ¹⁰	-0.049 (0.238)	-0.391 (1.900)
7 x 10 ¹⁰	-0.069 (0.218)	-0.548 (1.744)

Almost no intensity dependence.

Simply shows initial mismatch is filled with different time scale (tune spread).

Discussion

- Because of 8-fold symmetry, $Q_y=2.0$ is quarter resonance ($q_y=0.250$) in each cell.
 - Cell tune without tune shift is (0.227, 0.286).
 - q_y=0.250 is second order (?) parametric resonance. (Okamoto and Yokoya, NIM A482 p.51 2002).
- With alignment error, non-systematic resonances affect a beam.
 - Q_y=2.0 is no-systematic integer resonance.

Summary

- The results in a perfect lattice is unexpected. It may still have some problems in a code.
- With alignment errors, clear signal of intensity dependence due to non-systematic integer and half-integer resonances.
- Growth should be observed in ~20 turns.