Space charge simulation update (4)

Shinji Machida
ASTeC, STFC Rutherford Appleton Laboratory
7 June 2012
KURRI-FFAG collaboration meeting

Contents

- Quick review of tune shift (spread).
- Multi-turn injection.
 - intensity dependence
 - with alignment errors
 - with injection orbit errors
- Conclusion

Space charge tune shift

 Gaussian distribution (cut at 2.5 sigma in simulation), the maximum tune shift is

$$\Delta Q_y = -\frac{r_p n_t}{2\pi \sqrt{\epsilon_{rms,y}} (\sqrt{\epsilon_{rms,x}} + \sqrt{\epsilon_{rms,y}}) \beta^2 \gamma^3 B_f}$$

 Beam size in horizontal is mainly determined by dispersion and momentum spread

$$\sqrt{\epsilon_x} = \sqrt{\epsilon_{\beta,x} + (D_x \delta)^2 / \beta_x}$$

$$= \sqrt{11 \times 10^{-6} + 133 \times 10^{-6}}$$

b=1.3 m, e=8e-6 Dx=0.87 m, dp/p=0.0132

Intensity dependence

Tune shift vs intensity

intensity in per bunch	cell dq _y (q _y =0.287)	cell dq _× (q _× =0.227)
0.2 x 10 ¹¹	-0.013 (0.274)	-0.004 (0.223)
0.5 x 10 ¹¹	-0.033 (0.254)	-0.009 (0.218)
I x 10 ¹¹	-0.067 (0.220)	-0.019 (0.208)
1.5 x 10 ¹¹	-0.100 (0.187)	-0.028 (0.199)

Tune spread

• FFT of the first 50 turns (400 cells).

 Cell tune in the model lattice is (0.227, 0.287). 0.3

Multi-turn injection (I)

- In reality, a beam current is accumulated with many injection turns.
 - ~60 turns to accumulate | E|| ppb or 6E|| ppp
- dp/p of linac beam is small (0.001) and rf bucket height is much larger (0.042).
 - Mismatch in longitudinal phase space makes line density (or bunching factor) time dependent.

Multi-turn injection (2)

- Keep injecting the constant number of particles per turn.
- Increase intensity by injecting more number of turns (as in reality).
 - IEII ppb (6EII ppp) by 60 turns.
 - 2EII ppb (I2EII ppp) by I20 turns.
 - ...

Define "emittance" in the following way

• In vertical direction,

$$\epsilon_v = \sqrt{\langle y^2 \rangle \langle y'^2 \rangle - \langle yy' \rangle^2}$$

 In horizontal direction, it includes beam size from dispersion effects,

$$\epsilon_h = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$

where

$$x = x_{\beta} + \delta D \qquad \qquad x = x_{\beta}' + \delta D'$$

Intensity dependence

horizontal

vertical

 Big jump in the first few turns in H is due to the increase of momentum spread in a rf bucket.

Alignment error with IEII ppb

horizontal

vertical

Injection orbit error in horizontal with IEII ppb

We should repeat this with alignment error.

Injection orbit error in vertical with IEII ppb

We should repeat this with alignment error.

Conclusion

- As expected, emittance increase appears beyond IEII ppb.
- Alignment error of +/-0.5 mm makes the growth faster.
- 50% growth, or 20% in beam size, with +/-1 mm alignment error after ~120 turns (first 60 turns are injection period).
- Horizontal beam size is dominated by dispersion.
 We should use vertical beam size to see the space charge effects.

Next step

- Now we have a good idea how much and how fast the emittance growth by space charge occurs.
- Question is whether it is less or more than that by foil scattering.