

Plan of experiments at KURRI

Shinji Machida ASTeC/STFC Rutherford Appleton Laboratory 04 February 2014

Ishi @FFAG13

Results from beam studies in this summer

I. With short pulse, shorter than one turn, survival ratio after ~ 30 turns is ~ 40 %. That means injection efficiency at certain timing is high enough, still remaining some room for improvement thou.

2. Using intermediate pulse, say 4 turn equivalent, survival ratio after 1ms is

I / 30.

3. With long pulse, e.g. 50us, after 1ms survival ratio is only

I / 400.

(Tom Uesugi talking detail)

Sunday, September 22, 13

Injection seems to be the biggest issue

- Injection of 2.56 us (= 0.640 x 4 turns)
 - survival after 1 ms is 1/30.
- Injection of 50 us (= 0.640 x 78 turns)
 - survival after 1 ms is 1/400.
 - only 1.5 times more than 4 turns injection.

 cf, short pulse within a bucket survives 40% after 1.92 us (= 0.640 x 30 turns). This is injection efficiency.

3

Check list

- Horizontal and vertical orbit matching.
- Horizontal and vertical optics matching.
- Dispersion matching in horizontal.
- Emittance growth by multiple scattering at foil.
- Energy loss at foil.
- Optimum rf frequency w.r.t beam momentum.
- Optimum phi_s.
- Measurement of linac beam quality (dp/p, emittance).

4

Measurement of linac beam quality experiment 0

Make the rest of the experiment easy if we know dp/p at least.

Spectrometer type measurement is already planned?

Relative rf phase among RFQ, DTL1 and DTL2 change dp/p.

How the injection efficiency change when phase is adjusted?

Stability, day to day, is also important factor.

F/D/COR	814/995/445
HMBT-ST	Normal values
RF	off
BMON	(INU), AMP
OSCILLO	AC-50 Ω , Obake-subtracted
CHOPPER	$0.2\%~(0.316~\mathrm{revolutions})$

Vertical orbit matching (1)

Vertical orbit matching (2) experiment 1

If the vertical coherent oscillation can be observed by the new system, tuning of orbit matching is easy.

If not, set the scraper around the beam edge and minimise beam loss.

Q: Which knobs are available to change y and y' at injection point?

Consistent with Suzie's measurement

We may see tumbling by looking at the beam at several locations. Science & Tech

Measurement of dispersion function@foil experiment 2

If the position at foil can be measured (foil position which gives maximum H+),

 1) change main magnet strength to change "equivalent momentum".
 2) measure how much the beam position moves.

Sunday, September 22, 13

Making a dispersion matching is tricky because higher momentum beam must bend more on average.

Position (profile) measurement at foil position experiment 2'

Put a wire instead of foil to measure horizontal profile (or simply beam centre).

Sunday, September 22, 13

Tuesday, 4 February 2014

Horizontal orbit (mis-) matching

Off-center Injection

Low energy injection(IIMeV), circulated beam hit foil many times. Energy loss and emittance growth are become problem. To decrease the hitting probability, H- beam is injected off-center by about 10 mm parallel shift of injection line.

Horizontal emittance growth by injection miss-match must be taken account.

It is not clear if we should inject a beam on the closed orbit.

Horizontal BPM tells us the amplitude of mismatch and position of closed orbit.

Measure the location of closed orbit

55 mm

Same for vertical

55 mm

onary buckets

F/D/COR	814/995/445
RF	AWG,f1580, 0.950 Vpp (太田様 5 Vpp), 906.88 µs
BMON	(INU), AMP
OSCILLO	AC-50 Ω , 0.2 ms/div, 0.5MS
CHOPPER	$0.334\% \ (0.537 \text{ revolutions})$

Need to know 2013.10.15 200 V (mV) **STATIONARY RF 1580 KHZ** 75.0mm 100 72.0mm 0 68.0mm -100 64.0mm -200 1.2 H⁺/H 1.1 -300 0.9 0.8 -400 0.7 0.6 0.5 -500 0.4 0.3 -600 0.2 0.1 -700 – -0.1 0 0.1 0.2 0.3 0 0.4 0.5 0.6 50 Time (ms)

In stationary rf bucket

onary buckets

F/D/COR RF BMON	814/995/445 AWG,f1580, 0.950 Vpp 本田家の内もての。 (INU), AMP	growth	from	scattering
OSCILLO CHOPPER	AC-50 Ω , 0.2 ms/div, 0.5MS 0.334% (0.537 revolutions)			

図 5:

Figure shows considerable beam is lost in 0.05 to 0.1 ms. (78 to 156 turns)

From Okabe's slide at FFAG11, rms emittance (unnor.) becomes ~45 p mm mrad.

rms beam size becomes ~12 mm.

onary buckets

F/D/COR	814/995/445
RF	AWG,f1580, 0.950 Vpp (太田様 5 Vpp), 906.88 μ s
BMON	(INU), AMP
OSCILLO	AC-50 Ω , 0.2 ms/div, 0.5MS
CHOPPER	$0.334\% \ (0.537 \text{ revolutions})$

Empirical rule

図 5:

Difference between 75 mm and 64 mm comes from hitting probability (FP).

Assume FP~1 at 64 mm, then a condition which makes a beam survive is

Horizontal orbit mis-matching experiment 4

Off-center Injection

Low energy injection(11MeV), circulated beam hit foil many times. Energy loss and emittance growth are become problem. To decrease the hitting probability, H- beam is injected off-center by about 10 mm parallel shift of injection line.

Manipulate closed orbit@foil to decrease FP.

In practice, it may be difficult to shift the beam from closed orbit for more than a beam size. (beam size is too big.)

Injection seems to be the biggest issue

- Injection of 2.56 us (= 0.640 x 4 turns)
 - survival after 1 ms is 1/30.
- Injection of 50 us (= 0.640 x 78 turns)
 - survival after 1 ms is 1/400.
 - only 1.5 times more than 4 turns injection.

 Still 1/400 seems worse than expected. May need to consider longitudinal (accumulated momentum spread) as well.

Check list

- Horizontal and vertical orbit matching. *experiment* 1
- Horizontal and vertical optics matching.
- Dispersion matching in horizontal. *experiment* 2
- Emittance growth by multiple scattering at foil. experiment 4
- Energy loss at foil. experiment 4
- Optimum rf frequency w.r.t beam momentum. experiment 3
- Optimum phi_s.
- Measurement of linac beam quality (dp/p, emittance).
 experiment 0

Other topics

- COD correction by correction coils at rf cavities and its measurement.
- Tune optimisation and its measurement during a cycle.

Backup slides

Injection efficiency is maximum at 55 mm.

Simulation of accelerate after capture

- Linac beam : 100us(flat), (11.0+-0.03) MeV
- Foil: 20ug/cm^2(E loss 760eV), 10mm width
- RF voltage : 4kV

New injector Linac and H⁻ Ion Source

31


```
Linac beam parameter
```

```
E<sub>ext</sub> : IIMeV
```

```
Beam Pulse width(MAX) : 100 µsec
```

```
Peak Curr.(MAX) : ~5 mA

: ~3.12*10<sup>12</sup>[ppp]

(Present injector) : ~6.00*10<sup>8</sup>[ppp]

rep. rate : 1 Hz~200Hz

Horizontal

norm. emittance (90%) : 0.680 mm•mrad

Vertical

norm. emittance (90%) : 0.630 mm mrad

Ene. 90% : \Delta E \sim 45KeV
```

