

FFAG simulation update

Shinji Machida STFC/Rutherford Appleton Laboratory 19 November 2015

Where we stand?

• KURRI FFAG Simulation plan second draft wad released on 18 December 2014.

http://hadron.kek.jp/FFAG/colabo/meetings/KURRIFFAGSimulationPlanv4.pdf

 Results after a few months was published at IPAC'15 and Suzie presented its summary on 14 May 2015.

http://hadron.kek.jp/FFAG/colabo/meetings/sheehy-20150514.pdf

Last slide of Suzie's presentation

Next steps

 Need to upload these results/input files to simulation page & make sure correct files in github

Other codes (OPAL in particular) to benchmark longitudinal studies.

- We should continue according to simulation plan (on hadron.kek server in 18th December meeting)
 - Look forward to seeing matched distributions & high intensity studies.

A couple of questions

Do we keep using the same TOSCA file from now on?

- I think the answer is YES for code benchmarking for generic FFAG (ideal 12 hold symmetry KURRI FFAG).
- For simulation of KURRI specific, e.g., COD effect, influence of "patch", etc, TOSCA field map should be updated. Some one has to keep track of various files (Uesugi-san?).

Do we keep using the same rf voltage and frequency file from now on?

As long as the same TOSCA file is used, no need to change.

Benchmark step 0 single particle tracking

Without rf

- Transverse tune and revolution time or frequency vs momentum.
- Explore transverse phase space trajectory to observe DA.
- Amplitude dependent tune shift
- With rf but no acceleration
 - Direct comparison of longitudinal phase space trajectory.
 - Synchrotron tune vs longitudinal amplitude.

With rf and acceleration

- Direct comparison of longitudinal phase space trajectory.
- transverse and longitudinal tune vs momentum.

Benchmark step 1

multi particle tracking without space charge

With rf but no acceleration

- If the initial distribution is matched, there should be no emittance growth.
- This is a check that we can find matched distribution at least when there is no space charge.
- Emittance growth of transverse and longitudinal due to foil scattering.

With rf and acceleration

 Adiabatic damping should be observed. Physical beam size calculation has to include the change of beta function.

Benchmark step 2 intensity effects

With rf but no acceleration

- Find out matched beam with space charge.
- Emittance growth vs intensity (Malek on 11 June 2015).
- Emittance growth with space charge and foil scattering together.

With rf and acceleration

- As energy increases, space charge force becomes weaker.
- As energy increases, a beam escape from the foil.

KURRI specific benchmark step 1 without space charge

Modelling of COD by influence of rf cavity

- thin lens or 3D field map, does they make difference?
- Including correction element on both side.
- Modelling of injection line.
- Understand the effects of COD on other measurement including tune, dispersion.
- Calculate tune with more detailed TOSCA field map.

With rf

Without rf

 Understand capture process and beam survival when the beam injection for many turns.

KURRI specific benchmark step 1 coupling in transfer planes

- Simulate coupling effects due to
 - tilt of main magnets.
 - finite vertical COD.
- This can be done either by looking at single particle motion or transverse emittance exchange.

KURRI specific benchmark step 2 with space charge

With acceleration

- With foil scattering model and space charge in the realistic lattice, estimate emittance growth we should observe experimentally.
- Detailed simulation of injection and capture process with space charge and foil scattering.
- Study of collimator, whether it help or not.
- Study of image charge/current.

Any other suggestion?

