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Motivation:  
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Benchmarking of the codes  Comparison with experiment 

∆ν𝑥
ν𝑥
= 5.78 %   

∆ν𝑦

ν𝑦
= 9.02 %   and  Origin of the problem? 

How to remediate to it? 



Scaling FFAG model (reminder): 

• The magnetic field of a radial sector type has 
the form: 

 

   where 𝐹(𝜃)  is a periodic function of the   
 azimuthal angle θ            Fixed Field 

 

 

 

 

• Alternating Gradient is obtained by alternance of: 

- Positive curvature field, focusing    
𝜌

𝐵
 
𝑑𝐵

𝑑𝜌
> 0  

- Negative curvature field, defocusing  
𝜌

𝐵
 
𝑑𝐵

𝑑𝜌
< 0  

 

 

 

 

𝐵 𝑅, 𝜃 = 𝐵0 ×
𝑅

𝑅0

𝑘

× 𝐹(𝜃) 
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Correct/Original form of the scaling 
factor: 

• The original definition of the average scaling factor is:  𝑘 =
𝑑𝐵

𝐵
𝑑𝑅

𝑅

   

where B is the field averaged in azimuth. 

 
• Apply this form to compute the average scaling factor: 

𝑘(𝑅𝑖) =

𝐵𝑖:1 − 𝐵𝑖
𝐵𝑖

𝑅𝑖:1 − 𝑅𝑖
𝑅𝑖

 

where 𝑅𝑖 and 𝑅𝑖:1  are limited by the mesh size  (here 𝑅𝑖:1 − 𝑅𝑖 = 1𝑐𝑚) 
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Correct Scaling law: 
• Strong variations that can be 
improved if we have higher mesh size. 
 
• The correct scaling factor (curve in 
black) was obtained from the original 
definition (see previous slide) where no 
assumption is made to the form of the 
scaling factor. 
 
• It can be seen that each one of the 
other curves which was obtained from 
a specific reference radius R0 is valid at 
the proximity of this reference radius 
where the variations of k are still not 
too big.   

The scaling law                                        is only valid in the vicinity of the reference radius 

𝑹𝟎,   simply because  it is not a correct general solution of the equation 𝒌 =
𝒅𝑩

𝑩
𝒅𝑹

𝑹

 .                    

Thus when defining this equation, one has to choose 𝑹𝟎 very carefully.  

𝑩𝒂𝒗𝒆 𝑹 = 𝑩𝟎 ×
𝑹

𝑹𝟎

𝒌(𝑹)
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k F-magnet vs k D-magnet: 
• The scaling factor of the F and D magnets are different: 

𝑘 =

𝑑𝐵
𝐵
𝑑𝑅
𝑅
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k F-magnet vs k D-magnet: 
• The average scaling factor of the F and D magnets are 

different: 

The scaling factor of the F-magnet is constant ≈ 𝟕. 𝟔𝟓𝟔 
Yet, for the D-magnet, the variations are non negligible and  < 𝒌 >≈ 𝟗. 𝟏𝟏𝟒   

𝑘 =

𝑑𝐵
𝐵
𝑑𝑅
𝑅

 where, 

B =< 𝐵𝐹> (𝑅)  =
 𝐵𝑧 𝑅, 𝜃 𝑑𝜃
4

;4

 𝑑𝜃
4

;4

 

For the F magnet 

For the D magnet 

B =< 𝐵𝐷> (𝑅)  =
 𝐵𝑧 𝑅, 𝜃 𝑑𝜃
9.5

7.5

 𝑑𝜃
9.5

7.5
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Scaling factor map for the F and D magnets 

k F-magnet vs k D-magnet: 

Most of the important 
variations of the scaling 
factor for the D-magnet 
come from the 
interaction region with 
the F-magnet: cross-talk 
between the F-D 
magnet. 

F-magnet D-magnet 
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Objective  

• To carry out parametric studies of the space charge 
effects, the depressed phase advance is the natural 
parametrization. 

 
• Therefore if one finds a relationship between the tune 

of the DFD triplet and the scaling factors  𝑘𝐹  and 𝑘𝐷 of 
the F and D magnets respectively, one can investigate 
space charge effects and also understand certain 
sources of imperfections of the KURRI FFAG. 
 

• For that, the hard edge model of the cell was 
implemented in Mathematica. 
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½ F magnet 

D magnet 

𝑂𝐹 

𝑂𝐷 

𝑂 

Drift 

𝐴 

𝐸 

𝐶 

𝐷 

𝐵 

α𝐹
2

 α𝐷 

θ𝐹
2

 

𝜃𝐷 

α𝐵 
α𝑑𝑟𝑖𝑓𝑡 

𝜌𝐹 = 𝑂𝐹𝐴;  𝑅𝐹 = 𝑂𝐴 
 
𝜌𝐷 = 𝑂𝐷𝐶;  𝑅𝐷 = 𝑂𝐶 

𝐿𝐵 = 𝐵𝐶 

𝐿𝑑𝑟𝑖𝑓𝑡 = 𝐷𝐸 

α𝐹
2
+ α𝐵 + α𝐷 + α𝑑𝑟𝑖𝑓𝑡 =

𝜋

𝑁
 

𝐵𝐶 ⊥ (𝑂𝐹𝐵) 

𝐵𝐶 ⊥ (𝑂𝐷𝐶) 

𝑂𝐹𝐵 = 𝑂𝐹𝐴 

𝑂𝐷𝐶 = 𝑂𝐷𝐷 

𝐷𝐸 ⊥ (𝑂𝐷𝐷) 
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𝑶𝑪 ≠ 𝑶𝑫 

Hard edge model 



Conjecture: 

We make the following conjecture based on the 
results of the hard edge model:  

 

The Vertical tune of a DFD cell is given by: 
ν𝑧
2 = 𝑥1𝑘𝐹 + 𝑥2𝑘𝐷 + 𝑥3 

 

The horizontal tune of a DFD cell is given by: 
ν𝑥
2 = 𝑥1𝑘𝐹 + 𝑥2𝑘𝐷 + (𝑥3𝑘𝐹 + 𝑥4𝑘𝐷 + 𝑥5)

2 
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Analogy with ν𝑧
2 = −𝑘 +

𝑓2

2
 

Analogy with ν𝑥
2 = 𝑘 + 1 + 𝐴. 𝑘 + 1 2 



• THE BASIC ASSUMPTION OF THE HARD EDGE MODEL IS 
THAT ALL ORBITS ARE HOMOTHETIC TO EACH OTHER. 

• YET, WITH 

What the Hard edge model is missing 

1 =
𝐵𝜌 𝐹
𝐵𝜌 𝐷
=
𝐵𝐹
𝐵𝐷
∗
𝜌𝐹
𝜌𝐷

 

  

𝐵𝐹 𝑅 = 𝐵𝐹0 ×
𝑅

𝑅0

𝑘𝐹

 

𝐵𝐷 𝑅 = 𝐵𝐷0 ×
𝑅

𝑅0

𝑘𝐷

 

𝜌𝐹
𝜌𝐷
=
𝐵𝐷0
𝐵𝐹0
∗
𝑅

𝑅0

𝑘𝐷;𝑘𝐹

 
See Annex for more complete form if 
kD and kF are R-dependent.  

11 The rms tune variations are not accounted for in the hard edge model. 



Fringe field model in Zgoubi 

• We carry out parametric studies of the tune 
variations as a function of the scaling factor kF 
and kD of the F and D-magnet respectively. 

 

• We generate several field maps by varying kF 
and kD so that the median plane field is 
written in the form: 

𝐵𝑧 𝑅 = 𝐵𝐹0 ×
𝑅

𝑅0

𝑘𝐹

× 𝐹𝐹 𝜃 + 𝐵𝐷0 ×
𝑅

𝑅0

𝑘𝐷

× 𝐹𝐷 𝜃  

Only kF and kD are allowed to change. 
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Procedure 

1)  Generate a field map for a given (kF,kD). 

2)  A set of 30 closed orbits are generated 
between injection (@ 11MeV) and extraction 
(@100 MeV). 

3) For each lattice, the average value of the 
tune is calculated: 

4) For each lattice, the rms value of the tune is 
calculated  

< ν𝑥,𝑦> =
1

𝑁
  ν𝑥,𝑦,𝑖
𝑁
𝑖<1      ;     N = 30   

< ν𝑥,𝑦
𝑟𝑚𝑠> =

1

𝑁
  (ν𝑥,𝑦,𝑖−< ν𝑥,𝑦>)

2

𝑁

𝑖<1

  

For a perfectly scaling FFAG, < 𝝂𝒙,𝒚
𝒓𝒎𝒔> = 0  

= a measure of the tune spread 
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Example of a DFD triplet 

Magnetic field along several closed orbits 

𝐵𝐹 𝑅 = 𝐵𝐹0 ×
𝑅

𝑅0

𝑘𝐹

 

𝐵𝐷 𝑅 = 𝐵𝐷0 ×
𝑅

𝑅0

𝑘𝐷
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Stability diagram for a scaling FFAG 
Horizontal plane 

Tune 𝝂𝒙 RMS Tune 𝝂𝒙,𝒓𝒎𝒔 

 ν𝑥
2 = 𝑘 + 1 + 𝐴. 𝑘 + 1 2 

In the horizontal plane, the tune of a scaling FFAG can be 
approximated by: 

Less tolerance to imperfections when k becomes large. 
15 

kF=kD 



Stability diagram for a scaling FFAG 
Vertical plane 

Tune 𝝂𝒚 RMS Tune 𝝂𝒚,𝒓𝒎𝒔 

 ν𝑦
2 = −𝑘 +

𝑓2

2
 

In the vertical plane, the tune of a scaling FFAG can be approximated by: 

Conclusion: due to imperfect scaling law (kF ≠ kD), the rms variations of the tune are 
more important in the vertical plane. This is consistent with the measured tune variations 
(twice as important in the vertical plane than in the horizontal, see 1st slide). 

Zone of 
unstability? 
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TUNE variations due to imperfections 

The rms quantities yet to be included in the hard edge model. 16 

In the vicinity of the line 𝑘𝐹 = 𝑘𝐷 , the rms tune variations are proportional to  |𝑘𝐹 − 𝑘𝐷| 

Linear depdencen of the tune in the vertical plane, and parabolic dependence in the 
horizontal plane 



Tune diagram from multi-particle 
tracking 

Same exercise as before with multi-particle :  launch a KV beam 
distribution on several closed orbits with initial conditions  / 

In order to investigate the tune variations: 

𝑟𝑦 𝑠 + 𝐿 = 𝑟𝑦 𝑠 = 2 < 𝑦
2 >1/2= 𝜖𝑦𝛽𝑦 

𝜖𝑥,𝑦 =
𝜀𝑛𝑜𝑟𝑚
𝛽𝛾

 

𝑟𝑥 𝑠 + 𝐿 = 𝑟𝑥 𝑠 = 2 < 𝑥
2 >1/2= 𝜖𝑥𝛽𝑥 

 

Each distribution (with the same energy, no dispersion included) 
contains 900 particles for which the average value of the tune is 
computed as well as the rms tune variations. 17 



Tune diagram from multi-particle 
tracking 

The errorbars represent the rms 
tune variations for a bunch of 
particles (one closed orbit). 

𝑒𝑟𝑟𝑜𝑟𝑏𝑎𝑟𝑠𝑥 = 1/4 < ν𝑥
2 >1/2 

𝑒𝑟𝑟𝑜𝑟𝑏𝑎𝑟𝑠𝑦 = 1/4 < ν𝑦
2 >1/2 

𝛿ν𝑥
ν𝑥
≈
< ν𝑥
2 >
1
2

ν𝑥
≈
6.10;3

0.3168
= 1.9% 

NB:  in the above notation,  < ν𝑥
2 >1/2=< (ν𝑥−< ν𝑥 >)

2  >1/2 

(see next slide) 

Taking the tune averages help reduce the oscillatiory behavior obtained from single 
particle calculation. Yet, the oscillation is contained in the rms calculation. 

18 



Tune diagram from multi-particle 
tracking 

Observations: The average value of the tunes from multi-particle tracking is 
comparable to what we obtain from single particle tracking. 
Although, the rms tune variations in the vertical plane are small (see error bars), the 
same does not apply in the horizontal plane. Source of the discrepancy? 

ν𝑥
2  ≈ 𝑘 + 1 

𝛿𝑘

𝑘
= 2
𝛿ν𝑥
ν𝑥

 

𝛿𝑘

𝑘
≈ 2.8% 

As observed, the rms tune variations are obtained at higher radii and are consistent with the 
observation that the scaling factor oscillates at higher radii. Need for a higher mesh size to 
conclude that the rms variations of the tune are only related to the granularity of the map. 

NB:  you’re very welcome to check!  19 
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Stability diagram for the KURRI 150 
MeV FFAG 

This is only an 
approximation, 
given that the 
flutter is R-
dependent.  

Tune 𝝂𝒙 
Tune 𝝂𝒚 

RMS Tune 𝝂𝒚 RMS Tune 𝝂𝒙 



Proposal  

• Now, how to remediate to the problem of the 
tune dispersion? 

- The scaling factors are fixed by the gap size of 
the magnet. But the FD ratio (current in the F-
D magnet) can be adjusted. 

 

Therefore, a parametric study on the FD ratio 
aiming at finding the minimum of                   
can minimize the area scanned by the tune. 

< ν𝑥
𝑟𝑚𝑠> ×< ν𝑦

𝑟𝑚𝑠> 
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FD ratio 

(0.91 , 0.85) 

The minimum of  

P = < ν𝑥
𝑟𝑚𝑠> ×< ν𝑦

𝑟𝑚𝑠> 
 

obtained from the scan of BD and BF 

reduces P by 17.3 %. 
 
Yet, this is insufficient to justify any 
changes to the current design. 
(Also the current scan is only based on 
tweaking the field map, and is not as 
accurate as a 3D TOSCA calculation. 
 

However, one would expect that using some trim coils that can be manipulated 
independently along the radius (as in cyclotrons) could help reduce the discrepancy? 
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Needs to be answered: 

• To what extent, a KV beam can be utilized to 
model space charge effects in FFAG (non self 
consistent distribution). 

• Find a matching condition for FFAG in presence of 
space charge (general assumption is that there 
exists one unique matching condition!). Linear 
perturbation is one way to find an approximate 
solution .. 

• Add space charge to the previous to see how it 
affects the tune and therefore the dependence of 
kF and kD. 
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Backup Slides 



Flutter 

• If                                   were an exact solution,                
then, F is independent of R. 

• Yet, the plot shows that F is dependent of R as well. 

𝐵 𝑅, 𝜃 =< 𝐵 𝑅 >× 𝐹(𝜃) 
  

𝐵 𝑅, 𝜃 =< 𝐵 𝑅 >× 𝐹(𝑅, 𝜃) 
  

 𝐹 𝑅, 𝜃 𝑑𝜃

2𝜋
𝑁

0

=
2𝜋

𝑁
 

Flutter  F(R,θ) 
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Tune stability diagram in the large 
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• Investigate the change in betatron oscillation 
frequency due to space charge forces. The linear 
Laslett tune shift is given by: 

Laslett tune shift 

∆𝑄𝑥 =
1

4𝜋
 𝛽𝑥 𝑠

2𝑄

𝑟𝑥(𝑟𝑥 + 𝑟𝑦)
𝑑𝑠

𝐶

0

 ∆𝑄𝑥 ∝
𝑅

𝛽2𝛾3
 

If the emittance is kept the 
same for all energies 

Tracking results are         
consistent with the 
Scaling law of the 
Laslett tune shift 
(dispersion is 
neglected here)  

𝑄 ≈ 6.4 × 10;8  
at injection. 
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Modeling of imperfect scaling: 

• In order to determine the correct solution of 
the magnetic field based on the knowledge of 
k(R), one assumed that k(R) can be fitted with 
a n-degree polynomial: 

 

• After some math … the new solution is: 

 

𝑘 𝑅 = 𝑎𝑖𝑅
𝑖

𝑛

𝑖<1

 

B(R) is the median plane field averaged in azimuth 27 



Modeling of imperfect scaling: 

The new scaling law (shown in green) was obtained from the equation 

where   n=3,        𝑎0 = 7.6   and  

 𝑎1 = 4.74𝑒 − 03   ;  𝑎2 = −5.39𝑒 − 05  ;  𝑎3 = 9.04𝑒 − 08 
 
 The perturbed scaling law takes into account the R-dependence of the scaling factor 
and thus is more accurate to describe the magnet.    
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