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In circular accelerators, the betatron tune is measured by analysing the particle coordinates,
sampled over N turns. Algorithms based either on the Average Phase Advance method or on
the Fast Fourier Transform (FFT) are routinely used to compute the tune. More sophisticated
approaches have recently been proposed. They rely on analytical interpolations of the FFT, as
suggested by E. Asseo, or on algorithms based on continuous spectral analysis, according to the
studies of J. Laskar. In this paper we critically review the various methods of measuring the tune
and we present analytical estimates of the error as a function of N. The results are supported
by numerical simulations carried out on both simple and complicated lattices, including nonlinear
magnets. Applications to experimental data obtained in the CERN SPS are also shown.

1 INTRODUCTION

In circular accelerators, the choice of the working point strongly affects the stability
of the particle motion. Therefore, in order to investigate the performances of a
machine, one must have a precise knowledge of the value of the tune, i.e. of the
ratio of the betatron over the revolution frequencies. There are various methods
to evaluate the tune: an extensive review of them is given in Ref. 1. In this paper,
we consider the standard technique that requires to sample the transverse beam
position for N turns and to perform an appropriate frequency analysis of the stored
data. This method can be used both in theoretical studies and in routine operation.
In the first case, one follows the particle trajectory for N turns, using numerical
simulations. In the second case, one applies a fast deflection to the entire beam and
observe the subsequent oscillations for N turns using a beam position monitor. In
the following sections, we will describe extensively the algorithms by which one can
compute the value of the tune from a set of N consecutive values of the transverse
particle position. Our main concern will be to investigate in detail the frequency
resolution that each algorithm can provide, when the values of the beam position
are not affected by instrumental errors. This assumption will restrict the rigorous
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validity of our formulae to the case of tracking studies. Applications to experimental
measurements, affected by non-negligible instrumental errors, are still possible, at
the expenses of some loss in frequency resolution, see Ref. 2.

Two standard algorithms provide the tune from a time series of N consecutive
values of the particle trajectory: the Average Phase Advance (APA), and the Fast
Fourier Transform (FFT). The latter technique is quite standard and widely used in
many applications. The former one 1s based on the reconstruction of the phase space
of the particle trajectory and on the evaluation of the average angular progression
per revolution. Both approaches have an intrinsic error proportional to 1/N. In
the practical cases, N is of the order of a thousand, and therefore the error of the
tune is of the order 1073. This precision is fully satisfactory in routine operation.

However, in some applications one requires higher frequency resolution in as few
turns as possible. For instance, this is essential to measure the detuning with
the amplitude due to nonlinearities, whenever the initial beam deflection smears
out too quickly, either by filamentation or by radiation damping. On the other
hand, the time evolution of the instantaneous tune is useful to detect ripples or to
reveal synchro—betatron coupling. In a recent work, J. Laskar 3 has pointed out
some other relevant applications: the accurate tune evaluation over a wide sample
of initial conditions can provide tune footprints containing clear informations on
the global dynamics and on the width of resonances in a nonlinear machine %56,
Moreover, the change of the tune along the particle orbit has been suggested as
an early indicator of chaoticity to speed up the investigations of the long-term
stability 3:5.

Remarkable attempts to improve the resolution of the tune computation using
better algorithms were recently made by E. Asseo 7 and J. Laskar 4. The first
method is based on the analytical interpolation of the FFT, whilst the second one
relies on the search of the maximum of the continuous Fourier Transform. The
interpolation technique was applied to measure the tune in the SPS ® and in LEP °
whilst the continuous Fourier Transform was recently used in SPEAR. 10

We will critically review the methods for precise tune estimate, giving a particular
emphasis to those of Asseo and Laskar. We will present our estimates of the errors
for the different techniques as a function of N. The analytical results are also
supported by numerical simulations for both simple and complicated accelerator
models containing nonlinear magnets. Moreover, experimental checks have been
carried out on the CERN SPS, showing that the precision of the tune measurement
can be considerably improved even for very small numbers of turns (i.e. N = 16).

The main results presented in this paper can be summarized as follows:

e An exact analytical interpolation of the FFT, which generalizes the approach of
Asseo, has been worked out. The interesting feature of such an algorithm is that
it 18 completely explicit.

e We showed that the error associated both with the interpolation and with the
Laskar method is proportional to 1/N?2; moreover, a substantial improvement can
be obtained by using a filter. In the case of the Hanning filter we have worked
out for both methods an estimate of the error proportional to 1/N*%.
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e We carried out numerical simulations for a wide variety of models that show that
both the interpolation and the Laskar approach lead to similar results.

e We developed an interpolation procedure for the APA method which leads to a
substantial improvement of the precision with respect to the plain APA.

e We showed that to separate two frequencies whose distance is Av one has to
analyse at least N samples, with N > 1/Awv, independently of the algorithm.

The plan of the paper is the following. In Section 2 we describe the notations
and in Section 3 we present the implemented models. In Section 4 we discuss the
different methods for determining the tune and we outline an analytical estimate
of the associated error. In Section b we apply these methods to determine the
tunes in nonlinear mappings which model the betatron motion. We also analyse
the tune estimate with a low number of samples, focusing on the models where
the linear frequency is modulated. In Section 6 we apply the outlined methods to
determine the precise value of the instantaneous tune to experimental data of a
proton beam at the CERN SPS. Some proofs of the analytical estimates are left to
the Appendices.

2 NOTATION

In this paper we will use the following notation: s is the coordinate along the
accelerator azimuth; x,y are the coordinates in the plane perpendicular to s; p,
and py are the momenta conjugated to x and y, i.e. their derivatives with respect
to s. The particles progress in the four-dimensional phase space = = (2, py, y, py)-
Owing to the periodicity in s, it is customary to fix a particular section of the
machine and to define the one-turn map M, which gives the positions and the
momenta of the particle 2’ after one turn of the machine as a function of the initial
values of the variables z:

= M(z) . (1)

The phase space positions z(n) at the n-th turn are then given by the successive
application of the one-turn map n times; given an initial condition z, its orbit is
the collection of its first N samples. We assume that the origin in phase space
is a fixed point: M(0) = 0 and that the linear part of M around 0 is stable,
i.e. that it has four eigenvalues of modulus one (e27¥e e=2mive o2mivy =2mivy),
The frequencies v, and v, are the linear tunes of the betatron motion. For weak
perturbations of the linear motion, the tunes are still well defined: indeed, one of
the effects of nonlinearities is to introduce anharmonicity, i.e., to give a dependence
of the tunes on the initial condition. We denote by v4(N) the estimate of the tune
given by the method A using N samples of the orbit. The related error is given by
€a(N) =va(N) — .
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3 MODELS

In a first approximation, the motion of the particles in a circular accelerator can be
considered linear, with each degree of freedom evolving in an independent manner
along harmonic trajectories. Quite often, however, this model is insufficient. Well-
known mechanisms, such as the linear, the non-linear, and the synchro-betatron
coupling make more intricate the particle trajectory and mix together the three
degrees of freedom. Additional orbit modulations eventually appear due to the
unavoidable ripple of the main magnets. Nevertheless, in all the realistic cases, the
frequency spectrum of an individual particle orbit is quite simple and only contains
a numerable set of well isolated lines. They correspond to the eigenfrequencies of
the motion and to their side-bands driven by coupling and ripple. Multiples of
these fundamental peaks may also be present; however, their amplitude decrease
very rapidly with the harmonic number, and therefore they can be neglected. We
identified and described below five representative models of the particle orbits,
that cover, in our opinion, most of the cases of interest. We will use them to
produce simulated spectra for frequency analysis. The situation where the motion
is strongly damped with time has not been considered, since it is extensively dis-
cussed in Ref. 5. Some care is required in analysing beams with many particles,
especially when there is a finite frequency spread. Phenomena such as the Landau
damping and the emittance filamentation destroy any coherent beam motion and
can substantially modify the frequency response. However, the frequency analysis
techniques are still applicable if the duration of the measurement is considerably
shorter that the decoherence time.

The betatron motion is described in a separate manner for each degree of freedom.
For instance the horizontal one is described in the two-dimensional phase space
z = (x,py), using the complex coordinate z = x — ip,.

1) One sine wave plus harmonics. A simplified model of the orbit of a particle in a
linear lattice is given by a sinusoidal wave of frequency vy (which is the tune to
be determined), plus a sum of its harmonics with complex weights ay, of modulus
smaller than one:

z(n) — eZﬂ'iugn + Zak eZﬂ'iugkn |ak| <1. (2)
k

2) Two sine waves plus harmonics. To take into account the possible effect of
horizontal-vertical coupling we use a more sophisticated model that contains a
main sinusoidal wave of frequency v (with its harmonics), added to a secondary
sinusoidal wave of frequency vy (with its harmonics) with a complex weight of
modulus smaller than one:

z(n) — eZﬂ'iugn + Zak eZﬂ'iugkn + bOeZﬂ'iuln + Zbk eZﬂ'iulkn |ak|, |bk| <1.
k k

(3)
Using this model, we will study the conditions to disentangle the frequency vq
from v;.
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3) Modulated sine wave. In order to simulate synchro-betatron coupling or tune
modulation due to ripple of the power supplies, we use a sinusoidal wave whose
frequency vg 1s modulated at a frequency v,,.

z(n) = cos[2mvon + Asin(27vm,n)] . (4)

Tt is well known that a Fourier analysis of z(n) gives the main peak at vy plus
a series of secondary peaks (called sidebands) displaced from vy by an integer
multiple of the modulation frequency v,,. The above models will be used for both
numerical simulations and analytical calculations. More realistic simulations will
be performed for the following four-dimensional models.

4) 4D Hénon map. Tt represents the transfer map of a FODO cell with a single
sextupole in the thin lens approximation:

¥ = cos(2mvy)r + sin(27vy) [pe + (2% — y?)]

pl. = —sin(27v, )z + cos(2mvy ) [pr + (22 — y?)]

y = cos(2muy )y + sin(2nvy ) [py — 22y) ©)
py = —sin(2myy)y + cos(2mvy)[py — 22Y]

where v, and v, are the linear tunes.

5) SPS lattice. The lattice used represents the set-up for nonlinear dynamics exper-
iments 1. The nonlinear part of the magnetic lattice is made up of eight strong
sextupoles normally used to extract the beam, and of 108 chromatic sextupoles
placed near the main quadrupoles of the regular cells. The linear tune is set to
vy = 26.605 and v, = 26.538, which is close to resonances of 5th order.

4 TUNE DETERMINATION AND ERROR ESTIMATE

4.1 Average Phase Advance (APA) methods

We will present here the definition of the Average Phase Advance and the estimates
of the associated tune error. Improvements can be obtained through fitting pro-
cedures or by removing the phase space nonlinear distortion by the use of normal
forms. Numerical evidence of the behaviour of the APA methods will be presented
in Section 5.

4.1.1 Average phase advance The Average Phase Advance (see Ref. '?) is a
method used to compute the frequency of an orbit of a dynamical system in the
neighbourhood of an elliptic fixed point. In fact, in the theory of quasi-integrable
dynamical systems the APA is taken as the definition of nonlinear frequency (which
is usually called rotation number 3). According to the APA method, given a 2D
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orbit z(n) with n = 1,..., N, the tune is given by the average of 0,:

vapa(N) = 72“]\]1_1);971 ) (6)

where 0, is the phase advance between the iterate n — 1 and the iterate n. The
resolution in tune of the APA method will be studied using the signal of Eq. (3),
made of the sum of two sinusoidal waves without harmonics. Our deductions are
summarized below, and additional considerations are presented in Appendix A

e For generic vy, v1 and bg, the error is proportional to the inverse of the number
of samples:

c 1
leapa(N)| < Nqu Capa < 3" (7)

oIf [bg| < 1 (small perturbations of the linear case), the constant C'4p4 is propor-
tional to the perturbation strength:
|bol .

|bo| < 1 = Capa < o (8)

therefore, in the linear case the APA provides the tune with infinite precision.

oIf the distance between the frequencies Av = vg — vy is small compared with the
inverse of the number of samples, one cannot separate the two frequencies, and
the error is independent of N:

|bo

NA 1 N)I < A .
INAv| < = leapa(N)| < Y5 bl (9)

4.1.2  Fitted averaged APA In order to improve the convergence properties of the
APA method, one has to analyse the features of vapa(N) versus N; in Fig. 1(a)
we plot this function for a simplified orbit that follows Eq. (2); the convergence to
the asymptotic value is reached with damped oscillations around the limiting value.
One can get rid of the periodic component in v4p4(N) by considering the averaged
tune, 1.e.

niln;”“”"“(m) n=2.,N. (10)
The plot of {vapa(n)), presented in Fig. 1(b), shows that the error of the averaged
APA is very close to an hyperbola: therefore one can give a better estimate by
fitting the averaged APA with a linear regression

A

n—1

(vapa(n)) =

n=2

<VAPA(n) %I/Afit(N)—l— ,...,N; (11)
here v44;+(N) is the tune estimated by the fitting using N samples of the orbit,
and A is a constant. It will be shown by simulations that this method allows one
to improve the scaling law of the error

Clayi
leagic(N)| < —2Lt

< (12)
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4.1.83  APA over normal forms Another way to improve the APA method is based
on the perturbative tools 4. According to the normal form theory 2, it is possible
to determine a coordinate transformation such that in the new variables the dy-
namics shows explicitly its symmetries. If the APA method is applied over the orbit
transformed using normal forms, one obtains a better estimate since the distortion
of the orbits due to nonlinear effects 1s smaller, and therefore the constant in the

error 1s reduced:

Can
leans (N)] < % Cans < Capa. (13)

The effectiveness of this approach diminishes as the distance of the orbit from the
origin is increased: in fact, at large amplitudes the nonlinearities are stronger.
Moreover, one has to take into account that the perturbative series are divergent,
and therefore the unavoidable truncation introduces small approximations which
will affect the precision of the tune evaluation.

4.2 Fourier Series methods

4.2.1 Fourier Series (FS) Another method routinely used in the analysis of sig-
nals, is based on the Fourier Series (FS). A signal {z(1),2(2), ..., 2(N)}, where z(n)
is one of the coordinates of the orbit, can be expanded as a linear combination of
a finite number of orthonormal functions:

N .
. J
z(n) = Z(b(}/]) exp(2miny;) Vi = (14)
Jj=1
the coefficients ¢(v;) are given by the inverse formula
| X
é(v;) = ¥ Z z(n) exp(—2miny;). (15)
n=1

The sequence of the N coefficients ¢(v;) is the FS of the orbit; their absolute
values |¢(v1)], ..., |¢(vn)| are the amplitude spectrum of z(n). The frequency can
be evaluated as the abscissa of the main peak in the amplitude spectrum, i.e., the
value of v; which maximizes |¢(v;)|. Let us recall some well-known properties of

the FS:

eusing the procedure, we implicitly assume that the N samples z(n) are in fact
extended in a periodic sampled signal of period N;

ethe spectrum is therefore discrete and periodic of period N, since it contains a
finite set of independent modes e?™"i with v; = 1/N,2/N,...,(N —1)/N,1;

eif the signals have real values, the spectrum is mirror-symmetric around one half
in the frequency range [0, 1].

4.2.2  Fast Fourier Transform (FFT) 1In principle, the computation of the FS for
a signal of N samples requires N2 operations; indeed, if N is a power of two, one
can define an algorithm that computes the FS by using only N log N operations:
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this method is called the Fast Fourier Transform (FFT), and is widely used in many
different fields of physics and engineering.

The error associated with the FFT is due to the discreteness of the values of v;,
and therefore is given by
where N =2M Crpr = % ) (16)
The main advantage of the FFT is to provide a very fast estimate of the complete
Fourier spectrum, even though the direct evaluation of the main frequency is poor.
Moreover, contrary to the APA, the error is independent of the nonlinearity of the
system, and it does not tend to zero when the nonlinearities become small. In the
next subsection we will show how to improve the precision by using very simple
analytical tools.

Crrr

lerpr| <

4.2.8 Interpolated FFT Since the error in the FFT estimate is due to the dis-
creteness of the spectrum, one can try to obtain better results by interpolating
it around the main peak. The tune is then the abscissa of the maximum of the
interpolating function. Following the approach outlined by Asseo 71516 we use
as interpolating function the spectrum of a pure sinusoidal signal with unknown
frequency vpint:

sin N7(Vrint — ;)
Ry 1
|¢(V])| NSiIl?T(I/FZ'nt _ Vj) ( 7)
The explicit expression of the tune is:
k [ |¢(vh41)]sin(m/N) )
VFint = — + —arctan . 18
ro = 3+ pantan (T 1)

In the case of a sum of sinusoidal waves [see Eq. (3)], the error associated with this
method for large N and distance between the main frequency and the closest one
larger than N~! is

C in
lepint| < ;;2 - (19)
From Asseo et al. 7 the formula for the interpolated tune reads
ko1 |6 (Vi)
VFint = — + — . 20
N N T + 6] 2
This expression has been derived directly from
1 N amik( ) sin Nmw(vg — v4)
Moy — mik(vo—vi) gp| = J 21
s~y |[ o et (21)

in the specific case j = k, k + 1.

In fact it is easy to show that Eq. (20) can be derived by expanding Eq. (B.2) in
power series of N~! and neglecting O(N~3).

The arguments used to prove rigorously Eqgs. (18) and (19) will be given in
Appendix B.1. Our result modifies the interpretation quoted 5, where only a
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dependence on 1/N of €p;n: was found. Furthermore, our estimate agrees with
those reported by Schmickler ?, where the dependence on 1/N? was found, but it
was explained phenomenologically as the effect of the electronic noise. More general
cases are treated numerically in Sect. 5. Other types of interpolating functions have
been proposed in the literature, such as a parabola !7; in this case one needs three
spectra values to make the interpolation. Even though the parabola is not optimal,
it provides some gain with respect to the plain FFT. A discussion of this method
and of the associated error is given in Appendix B.2.

4.2.4 Interpolated FFT with data windowing A standard approach used in signal
processing theory to improve the Fourier analysis is based on filtering the data z(n)
using weight functions x(n) (see Laskar 2 and Harris 18). Tn this case, the FS of
the orbit reads

1< .
é(v;) = ¥ Z z(n)x(n) exp(—2mwinv;). (22)
n=1
We consider a Hanning filter
—9an2 (Y.
x(n) = 2sin (N) ; (23)

then, the spectrum of a pure sinusoidal signal of frequency v is

sinz(ﬂ'/N) sin mN (vg — v;) cos m(vg — v;)

|9(vj)] = (24)

Nsinn(vg — v;) sinm(vg — vy + %) sinm(vg — v — %)

With respect to the case without filter, one has two effects: the width of the main
peak centred at v is increased from 2/N to 4/N; moreover, for large N the height
of the peaks that are far from the main one is reduced from 1/N to 1/N3. This
second feature allows one to reduce considerably the influence of next-to-leading
frequencies, which are the main sources of error in the determination of the tune.
One can define higher order windows x;(n) o sinl(ﬂ'n/N), with [ > 2: for high
! the broadening of the main peak width becomes dominant over the reduction
of the influence of the secondary harmonics, and therefore no improvement in the
precision of the tune estimate 1s obtained. The Hanning filter proves to be one of
the optimal filters (see also Harris '8).

By applying the same reasoning used for the case of the interpolated FFT, it is
possible to show that the expression of the tune is:

k 2w

1 2
VFHan = 5 + By arcsin [A <|¢(1/k)|, |6 (Vi1)], cos Wﬂ-) sin W] , (25)

where the function A is given by

—(a+be)(la—0b)+ b\/cz(a +0)? = 2ab(2¢2 —c—1)
a? + b2 + 2abe

A(a, b, c) = . (26)
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Moreover the error scales as:

CFHan
Nt

e pint] < (27)

The proof is given in Appendix B.3.

4.3 Fourier Transform methods

4.3.1 Fourier Transform (FT) Another very effective approach which has been
extensively used in the literature 34510 ig based on the Fourier Transform (FT).
Let us consider a continuous function f(¢), where ¢ € R. Then, it can be expanded
as a linear combination of an infinite number of orthonormal functions:

+oo

f(@) :/ é(v) exp(2mivt)dv. (28)

— 00

The function ¢(v) is the FT of f(t), and is given by the inverse formula

é(v) = %/0 F(t) exp(—2mivt)dt. (29)

The main frequency of the function f(t) is given by the abscissa of the maximum
of the function ¢. The FT provides a much better estimate than the plain FFT,
since in this case the frequency v varies over an interval and not over a finite set of
points.

In our case we have a discrete system whose orbit z(n) is defined only for integer
times. Therefore one has to replace the integral with a finite sum in Egs. (28) and
(29):

| X

é(v) = v HZ:% z(n) exp(—2mivn). (30)
This definition is equal to the FS [see Eq. (15)]; the only difference is that now
v is a continuous variable. The position of the maximum of |¢| provides the tune
estimate. Contrary to the case of the interpolated FFT, no analytical formulas
are available; indeed, the maximum can be computed, using vppr as a first guess,
through a standard numerical approach such as the bisection method or the Newton
method.

The FT provides a tune estimate that has infinite precision for the linear case.
In Appendix C we give an analytical estimate of the error for the case of a sum of
sine waves. For the sake of simplicity, the case of a continuous orbit f(¢) has been
analysed: the same results hold for the discrete case. One finds the same scaling
laws as in the case of the interpolated FFT.

eFor large N, provided that the distance Av between the main frequency and the
closest one is greater than 1/N, one has

Crr
e

lepr| < . (31)
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oIf AvN < 1, the error is independent of N and one obtains the same estimate

that holds for the APA [see Eq. (9)].

4.3.2 FT and data windowing As usual, data windowing considerably improves
the precision of the method: one defines a FT as

d(v) = % Z z(n)x(n) exp(—2mivn) (32)

where x(n) is a window function. In the case of a Hanning window [see Eq. (23)]
one obtains an error estimate which scales like N ~*:

CrrHn

- (33)

lerT Han| <
This result is proved for a continuous signal in Appendix C.2 and has been checked
numerically (see Figs. 2-6). A similar proof can be given for the discrete case. Our
estimate differs from that of Laskar 3, where only the depression of the perturbing
secondary maxima, proportional to 1/N3, was taken into account.

5 NUMERICAL RESULTS

The effectiveness of the methods and the error estimates for tune evaluations have
been checked numerically on the models presented in Sect. 3. All the figures are in
double logarithmic scale.

5.1 Sine waves

We use the signal of Eq. (2) with main frequency vy = 0.28, and four harmonics
with exponentially decreasing amplitudes aj = e~*.

In Fig. 2 we plot the behaviour of the error ¢4(N) versus the iteration time N
for the different methods. In Fig. 2(a) the improvement of the precision due to the
fit performed on the APA method is apparent. The very small error (about 10~17%)
for some special values of N 1s the effect of some cancellations due to the too simple
structure of the analysed signal. In Fig. 2(b) the three regimes of the different types
of Fourier analysis (i.e. ¢(N) o 1/N, 1/N?, 1/N?) are clearly visible. The stepwise
decrease of eppr(N) corresponds to N = 2M for integer M. The results of the FS
with interpolation and of the FT are very similar. Note that with this model the
exact value of the tune is a priori known, being an input parameter of the signal.

Let us now consider model 2); the main tunes are set to the values vy = 0.28
and v1 = 0.31 corresponding to the linear frequency of the planned LHC. The main
amplitude of the second frequency is arbitrarily set to 0.25. For each tune, four
harmonics of exponentially decreasing amplitude are included. The results of the
simulations are shown in Fig. 3. As in the previous case the error scales according
to the expected power laws.
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By choosing v closer to vg, one can see that ¢(N) becomes constant as the con-
dition NAv > 1 is not fulfilled. This effect is clearly shown in Fig. 4 corresponding
to o = 0.28 and vy = 0.281. The plateau of ¢(N) is visible up to N = 103. Similar
results have been obtained for Ay = 104, where the plateau is lengthened up to

N = 10%

5.2 4D Hénon map

We consider the evaluation of the tune in the 4D Hénon map [see Eq. (5)]. Orbits
with initial conditions either near the origin or close to the border of the dynamic
aperture are investigated. In both cases the initial values of the horizontal and
vertical positions are identical, whilst the conjugated momenta are set to zero. Since
the tune at a finite value of the amplitude is not known a priori, we conventionally
decide to evaluate it by means of the FT method with Hanning filter for N = 10°
samples. The tune error 1s then the difference from these conventional values.

In Fig. 5 the various estimates of the tune as a function of N for initial conditions
at 1/10 [Fig. 5(a) and 9/10 (Fig. 5(b)] of the dynamic aperture are shown. The
scaling laws are fully confirmed as for the previous cases. Furthermore, using the
APA method combined with normal forms we find an extremely precise determi-
nation of the tune even for a very small number of turns, although the scaling law
is still proportional to 1/N. This implies that the proportionality constant Can
is very small. In addition the data of Fig. 5 show that C'4,; strongly depends on
the initial amplitude of the orbit: the improvement becomes considerably smaller
close to the dynamic aperture.

5.3  SPS lattice

Simulations have been performed on a realistic model of the CERN SPS with strong
perturbing sextupoles, residual linear coupling, and without accelerating RF or tune
modulation. The initial values of the horizontal and vertical positions are chosen at
half of the dynamic aperture, and the conjugated momenta have been set to zero.
As in the previous subsection, the reference value of the tune is that obtained with
the FT method and the Hanning filter in 10° turns. In Fig. 6 the errors for the
different methods are presented. They confirm the scaling laws already discussed.
The asymptotic value of the error tends to zero for N large. However, one usually
find a finite threshold due to computer precision. For sine wave and the Hénon map
this threshold corresponds to the machine accuracy (107!) as shown in Figs. 2-5.
For the SPS lattice, however, this value is of the order of 1077, probably because
of the much larger number of operations required to perform the tracking.

5.4  Frequency-modulated sine wave

In this section we numerically analyse a sine wave whose tune vy is modulated by
a secondary frequency vy, [see Eq. (4)]; we fixed vy = 0.6, vy, = 0.005 and A = 0.1.
For N large enough to resolve the sidebands from the fundamental oscillation, 1.e.,
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for N > 1/vp,, the tune error follows the usual scaling laws. But, when N < 1/v,,
the value of the tune is no longer well defined. To clarify this, let us consider a
signal that contains p/N samples. We can subdivide them into p samples, each
containing N samples and compute with them p consecutive values of the tune.
These values oscillate around vy with frequencies that are harmonics of v,,. An
example of this is shown in Figs. 7 and 8. In Fig. 7 the plain FFT over N = 2048
is shown; in Fig. 8(a) we plot the tune computed over p = 128 samples of N = 16
samples. We consider this plot as a new time series and apply to it an FFT: the
resulting spectrum presented in Fig. 8(b) shows the low harmonics of v,,. This
behaviour i1s independent of the choice of the modulating frequency and of the
value of N, provided that N < 1/vy,. Analogous results have been obtained for
a 4D Hénon map with modulated linear frequency. The procedure outlined here,
with the academic interest of clarifying the definition of the instantaneous tune,
will be applied to the experimental data in Sect. 6.

6 EXPERIMENTAL RESULTS

The algorithms for tune measurements have also been tested on experimental data.
We use proton beams during the rise of the magnetic field at an energy of about
400 GeV during normal operation. The horizontal and vertical tunes are close to
0.62 and 0.58, respectively, the chromaticities are close to zero (@}, , ~ 2), and the
closed orbit is well compensated (r.m.s. deviation approximately 0.5 mm). After
a single-turn kick deflection, the value of the transverse position is stored for 1024
turns. An example of data relative to the vertical motion is given in Fig. 9(a). The
amplitude of the beam oscillation is decreasing, due to the presence of an active
transverse feedback used to avoid coherent particle motion. The FFT spectrum of
the vertical betatron oscillations is shown in Fig. 9(b). The main peak corresponds
to the tune v, = 0.5830. Sidebands are clearly seen, corresponding to a tune
modulation v, = 0.011. The error associated with the FFT over 1024 turns is
0.0005. By interpolating the FFT with Hanning filter to the whole series of 1024
data we get v, = 0.58319 in agreement with the FFT (see Tab. 1) within the error.
We then considered the first 128 turns: the precision of the FFT drops to 0.004,
whilst the interpolating and filtered FFT gives a tune which is still in agreement
with the values calculated with 1024 turns.

For N < 128, the main peak can no longer be disentangled from the sidebands
and the measure of the tune is affected by the presence of the modulation. Indeed,
subdividing the 1024 data in p = 64 samples of N = 16 values and computing for
each of them the tune, one can see an oscillation around the mean value 0.58322 of
amplitude within +0.003 [see Fig. 10(a)]. The spectrum of this signal is shown in
Fig. 10(b): one observes the harmonics of the modulating frequency vy,. This is in
agreement with the behaviour illustrated for the frequency-modulated signal given
in Sect. 5.4. Notwithstanding the presence of the ripple, there is a considerable
improvement also for an extremely low number of turns: one can observe from
Fig. 10(a) that, using this method, the error of the tune estimate over 16 turns
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TABLE 1: Tune estimates for the SPS.

N FFT Interp. FFT + Hanning
1024 0.5830 £ 0.0005 0.58319
128 0.585+ 0.004 0.5832
16 0.56 £ 0.03 0.585

is always bounded by 40.003, i.e., one order of magnitude less than the error
associated with the corresponding FFT (see Tab. 1).

These examples show that also in experiments a precise measure of tune can be
performed with interpolation and filtering techniques, substantially reducing the
requested number of turns. The same considerations are valid for the approach
based on the FT plus Hanning filter.

7 CONCLUSIONS

We presented here a complete overview of the methods used to determine the
betatron tune in circular particle accelerators. They are essentially based on well-
assessed concepts of Fourier analysis, the most popular of which is the FFT, a simple
and powerful algorithm, widely used to compute the spectrum of the betatron
oscillations. We pointed out that recent applications, mostly related to the analysis
of nonlinear effects, require more precision than allowed by plain FFT. We described
the methods to increase the tune precision (interpolated FFT proposed by Asseo,
NAFF 3 proposed by Laskar) and we worked out in detail the scaling laws of the
error as a function of the available number N of iterations. Our effort was oriented
to show analytical and numerical evidence of these scaling laws, rather than specific
applications.

Our experimental analysis was on purpose concise and rather academic in order to
corroborate the theoretical results with real measurements in standard operating
conditions. However, we cannot refrain from stressing that the applications of
the modern methods of Fourier analysis discussed here are extremely appealing
both in experimental and numerical studies of beam dynamics. These methods are
certainly propaedeutic to a deeper investigation of existing or planned accelerators,
for instance:

e to study the global beam stability in the CERN LHC by dense-tune footprints ¢,

eor to measure the detuning with the amplitude in CERN LEP, at the highest
energy, in presence of fast radiation damping.

These investigations require robust algorithms that are able to provide in a simple
manner the precise tune value of the instantaneous betatron tune.
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APPENDIX A

Appendix A ERROR ESTIMATES FOR THE APA METHOD

In this section we prove the error estimates of the APA method for a simplified
orbit that is made up of a linear combination of two sinusoidal waves:

z(n) = e2™On | poe?min [bo| < 1 ne€ N; (A1)
we express z(n) as '
z(n) = Ape'?n, (A.2)
where
A, = \/1 + 2bg cos 2mnAv + b02
4 ; bg sin 2mnAv
n = vgn— — arctan
0 2w 14 bgcos 2rnAv
and Av = 1o — v1. We have assumed that by 1s real: this assumption is not

restrictive and one can prove that in the general case, by complex, one obtains the
same results. The tune estimate given by the APA method is

vapa(N) = ﬁ Z(¢j —¢j_1) = ﬁ(@v — $1); (A.3)

then, shifting the origin of the angles in order to set ¢y = vy, one obtains

bosin 2r N Av
— —————arct ) A4
2r(N = 1) aretan g + bgcos 2N Av (A4)

vapa(N) =g

One can give the following estimates.

eIn all cases, since the arc tangent is bounded by 7, one has the estimate

1
leapa(N)] < 5

TR (A.5)

oIf the second frequency has a very small amplitude |by| < 1, one can expand
Eq. (A.4) at the first order:

vapa(N) = vy — Wo—n sin 27N Av + O(|bo|?) (A.6)
and therefore one obtains
leapa(N)| < _ bl |bo] < 1. (A7)
—2r(N = 1)

This corresponds to the limit for weak nonlinearity.



TUNE EVALUATION 17

oIf Av is very small compared to the inverse of the number of the samples N~1,
then one can expand the trigonometric functions at first order in NAv:
bo N

—_— NAv|? A.
e 0N AV (A8)

I/APA(N) = Vo — Av

therefore the error is approximately independent of the number of samples (as
long as the condition |NAv| < 1 is satisfied):

2/bo|

. A9
[T+ bol (4.9)

leapa(N)| < |Ay|
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APPENDIX B

B ERROR ESTIMATES FOR THE FS METHOD

B.1  FFT with sine interpolation

The starting point of our analysis is the interpolating function (17). Let ¢(vy) and
#(vk+1) be the main peak and its largest neighbourhood of a generic spectrum.
Then, the interpolation procedure gives

|o(vi)] _ _ Nsinm(vpine — (k+1)/N)
|6 (Ve 41)] Nsin 7 (vpins — k/N)

(B.1)

whose solution reads

Vping = ﬁ larc an | (Vis1)|sin(m/N)
Fint — N + T t <|¢(Vk)| n |¢(Vk+1)|COS(7T/N)) . (BQ)

This formula provides the exact frequency in the case of a linear system.

In the case of a generic signal, made up by the sum of many sine waves, we have
to take into account the effect of the secondary frequencies on the coefficients ¢(vy)
and ¢(vg41). Using the interpolating function shown in Eq. (17) one can see that
the new coefficients ¢(vy) differ by the old ones by a term proportional to 1/N.
Therefore Eq. (B.2) will read

_ k +1 ;
Vpint — — + —arctan
Fint Nz

sin(m/N)|¢(ve41) + O(N™Y)] )

S0+ O+ et vovT ) (B

The final estimate (19) can be obtained by expanding again the previous equation
and using Eq. (B.2)
UPint = Vpint + O(N7?). (B.4)

B.2  FFT with parabolic interpolation

In this section we explicitly work out the tune estimate through the FFT with
parabolic interpolation and the associated errors. Let us start with the interpolating
function of a linear signal given by Eq. (17). The width of its main peak is 2/N
therefore it contains only two bins of the plain FFT. We select the main peak
|¢(vi)| and its neighbour |¢(vg—1)| and |¢(vk+1)|, assuming that |¢(vg41)] is the
smallest we change its sign. We interpolate these three peaks with a parabola
y = ax?+bx+c; substituting the interpolating points (v _1, [¢(vk—1)]), (vk, |0 (vk)])
and (vg41, —|¢(vp41)]), one obtains a system that determines the constants a, b, c.
The interpolated tune reads

b BT e+ )]
VP = T T N T i ) = 260 - e D)




TUNE EVALUATION 19

A comparison with the exact solution (B.2) shows that the above formulais affected
by an error which is O(N~1). If we use the Hanning filter, the central peak of the
interpolating function in Eq. 24 contains three bins of the plain FFT, therefore the
interpolating points are (vg41,|¢(vr+1)|) and (v, |¢(vg)]). The final result will,
however, be affected by an error O(N~1).

B.3  FFTwith sine interpolation and data windowing

Following the same approach used in Appendix B.1, we compute the FFT of a
filtered orbit, and we select the main peak and its largest neighbour ¢(vy) and
#(Vi41); then, we make an interpolation using the explicit solution worked out for
the linear case [see Eq. (24)], where vy is replaced by the tune estimate vppan. One
obtains the following equation

|o(vi)] _ . cos m(VrHan —k/N)  sinm(vpman, — (k + 2)/N)
|6 (Vis1)] cos m(Vpman — (k+1)/N)sinm(vpgan — (k= 1)/N)

whose solution is given in Eq. (25).

In the case of a sum of sine waves, applying arguments similar to those used in
Appendix B.1, it can be shown that the secondary frequencies affect the Fourier
coefficients by an error which is O(N~3): this is a direct consequence of the presence
of the filter. Therefore Eq. (25) can be recast in the following form

(B.6)

ko1 2 2
VPHan = N—I—ﬁ arcsin [A <|(/>(1/k) + O(N7)|, |¢(vrs1) + O(N3)], cos Wﬂ-) sin Wﬂ-
(B.7)
By expanding the previous equation one obtains the final result
VPHan = VPHan + O(N™Y), (B.8)

which proves the estimate (27).
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APPENDIX C

C ERROR ESTIMATES FOR THE FT METHODS

C.1  Fourier Transform

In this Appendix we evaluate the error estimate of the tune computed through
the FT method [see Sect. (4.3.1)] in the case of a continuous signal z(¢), where
t € [-N/2,N/2]. Let us consider the linear case:

zo(t) = e2mivot (C.1)
The FT [see Eq. (29)] of this signal is

sinm(vg — v)N

= 2
do(v) (v —v)N (€:2)
and it can be expanded around the maximum vy:
v—1g)? niN?
60() = don) + LD gt00) 4 O - ) Yoy = -T2 (03)

In the linear case, the position of the maximum of the FT coincides with the
frequency vg. If we add a perturbation made up of a sinusoidal wave [see Eq. (A.1)],

the FT reads

sinm(vg —v)N sinm(vy — V)N
m(vo —v)N 0 (v —v)N

¢(v) = ¢o(v) + ¢1(v) = (C.4)

We expand the derivative of the FT around rg in order to evaluate the shift in the
main peak due to the secondary frequency:

% = ¢} (o) + (v = v0) (65 (o) + ¢ (v0)) + O(v — v0)* ; (C.5)

setting the derivative to zero, one obtains the FT estimate:

91 (o) _ ¢1(10)

I . Sl Y S 5 SV A— C.6
R R A O = R T (C6)

VFT = Vo —
We assume that Av = vg — vy is O(1), and we expand in powers of N~1: since
@ (vg) is O(1) and ¢ (vo) is O(N), one has

_ 3¢1(vo) 1
VP = Vo — 2 N2

+O(N™Y (C.7)

and therefore the error estimate 1s

C 3¢
lepr| < ]\ZT Crr = qs;(zyo) : (C.8)
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If Av is small compared to the inverse of the number of samples, one can prove
that in the limit Av N <« 1 the error is independent of N, and one obtains the same
estimate as for the APA method [see Eq. (A.9)]. The same kind of analysis can be
carried out for a signal of type 2), with complex amplitudes.

C.2 FT with Hanning Filter
We consider a weight function y, and we define the FT in the continuous case as
é(v) = —/ eV () (t)dt ; (C.9)
N J_ny2

we analyse the case of a Hanning filter [see Sect. 4.3.2], which for a signal defined
int € [-N/2,N/2] reads

i
t) = — ] . C.10
() =cos (3) (©.10)
The FT in the linear case is
1 sinm(vg — v)N

N3 (vo —v) ((1/—1/0)2 — %) ’

One can carry out the same analysis as in Appendix B.2 for a weakly perturbed
orbit [see Eq. (A.1)]: the first equality of Eq. (C.6) still holds, but in this case the
derivatives of ¢ satisfy the following scaling laws

o(v) = (C.11)

0(v0) = O(N?) $1(v0) = O(N7?) (o) =0(NT) (C.12)
and therefore in the case N > 1, NAv > 1 one has

Crra

- (C.13)

lerra| <
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FIGURE 1: Tune computed as the Average Phase Advance as a function of the number of samples
N for a sine wave [see Eq. (2)] with four harmonics (a). Averaged tune (v4pa(n)) versus n for
the same signal (b).



TUNE EVALUATION

Log le(N)I

——APA
------ Fitted APA

=
Z
N’
w
:D : FORSY aA
! AAA A
S FFT Saetepeey N
- 12+ —0O—FFT parabolic interpolation 7 oy
qg | EUFT ¥oetenen
— - - — FT + Hanning AN
16 4 ------ FFT interpolated \seveesvesees
— @ — FFT interpolated + Hanning
-18 i i 1 1 1 1
1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00
Log N

FIGURE 2: Tune error (N) versus N for the APA methods (a) and for the Fourier methods (b);
the signal is generated by one sine wave with four harmonics [see Eq. (2)]
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FIGURE 3: Tune error e(N) versus N for different methods. The signal is generated by two sine
waves with four harmonics each [see Eq. (3)], with vy = 0.28 and v = 0.31.
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FIGURE 5: Tune error E(N) as a function of N for an orbit of the 4D Hénon map with v, = 0.28

and vy = 0.31: initial condition close to the origin (a) and close to the dynamic aperture (b). A
selection of the described methods is shown.
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FIGURE 7: FFT of a signal of a modulated sine wave [see Eq. (4)].
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FIGURE 8: Tune value for a sine wave with modulated frequency [see Eq. (4)] computed over
short samples of length n = 16 (a); FFT of the tune dependence on the number of samples (b).
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samples of length n = 16 (a); FFT of the tune dependence on the number of samples (b).



