RF capture of KURRI FFAG Main Ring

2011.09.15

T. Uesugi, Y. Ishi, Y. Kuriyama, J-B. Lagrange, Y. Mori, R. Nakano, B. Qin, E. Yamawa (KURRI), Y. Niwa, K. Okabe, I. Sakai (Fukui-univ)

=== Introduction ===

Charge-exchange multi-turn injection without Bump-magnets

The injected beams escape from the foil by rf acceleration:

$$\begin{aligned} \text{Nturn} &= \frac{dE}{dR} \times \frac{\Delta R_{\text{foil}}}{V \sin \phi_s} \\ &= \frac{1}{24 \text{ mm/MeV}} \times \frac{10 \text{ mm}}{4 \text{ kV} \sin \phi_s} \\ &\quad (\sim \text{ several 100 turns }) \end{aligned}$$

Circulating beams hit the foil many times.

(offset inj)

What is problem ?

Energy loss

 $\Delta E_{\rm loss} = 760 \ {\rm eV/turn}$

Synchronous phase shift $V \sin \phi_s = V \sin \phi_a + \Delta E_{
m loss}$

Multiple scattering
(neglected in this study)Transverse emittance growth
(neglected in this study)

Overheating of the stripping foil This can give the intensity limit in future

Maximum capture efficiency with Minimum foil-hitting turn no.

Condition of charge-stripping inj scheme in KURRI-FFAG MR

* See K. Okabe in this workshop

Injected beam

Peak intensity : < 5 mA Pulse length : < 100 us

Stripping foil

- Thickness: 20 ug/cm²Energy loss: 760 eV/ turnWidth: 25 mm
- (10 ug/cm^2 is under consideration)
- (From Bethe's formula)

RF system Maximum voltage : 4 kV

Schematic diagram

Acceleration at constant PHI_a

Bucket areas are plotted here

Choosing acceleration phase

Choosing acceleration phase

Low ϕ_a

- Large bucket area
 high capture efficiency
- Slow acceleration speed
 - . long duration at E_{inj}
 - many foil-hits by particles
 - . strong 'boundary-effect'

High ϕ_a

- Small bucket area
 - . low capture efficiency
- Fast acceleration speed
 - . short duration at E_{inj}
 - . few foil-hits by particles
 - . weak 'boundary-effect'

trade-off

--> Simulation studies are necessary !!

=== Stimulation studies ===

Simulation model

- Simple kick-drift algorithm_
- Particles are injected during first 100us.
- Uniform energy loss 760 eV each turn, for particles whose energy is less than threshold.
- The threshold corresponds to the foil edge.
- Transverse motions are neglected. Offset injection is not adopted.

Example (1) Fast acceleration

 $\phi_a = 40^o$

Example (2) Present operation

 $\phi_a=30^o$

Example (3) etc...

$$\phi_a = 20^o$$

Example (4) Large bucket

 $\phi_a = 5^o$

Capture efficiency depending on ϕ_a .

Efficiency takes maximum around

 $\phi_a = 10^o \sim 20^o$

But, how about the number-of-foil-hit? -->

Number of foil-hit depending on ϕ_a .

The number of foil hits is very high.

However, the number foil-hits at high phi_a is dominated by the particles which has dropped from the bucket!

In order to decrease the Number of hits, ---->

Number of foil-hits is expected to decrease --->

Example of chopper work

Without chopper (again)

With chopper (0-130deg)

SUMMARY

- Longitudinal simulation studies were done with energy-loss at stripping-foil.
- Capture efficiency took maximum when PHI_a = 10-20deg.
- Number of foil-hits by particles can be problem.
- Number foil-hits can be reduced when we use a chopper at injection beam-line.

RF of KURRI FFAG Main Ring

And Proposal of Combined-Cut-Core experiments

2011.09.15

T. Uesugi, Y. Mori (KURRI), M. Yoshii (J-PARC), Y. Ito and T. Minamikawa (Fukui Univ.) et al.

=== Existing RF system ===

Systems

Cavity photo

Magnetic alloy cores

Magnetic-alloy (FT-3M) x 2 pieces, 1700mm x 1000mm x 30mm

Impedance

V ~ 4 kV (1500-4500 kHz)

=== 2nd RF cavity ===

Motivation of Installing a new RF cavity

- Increase voltage
- ---> (1) fast acceleration,

for (1A) higher repetition, and/or (1B) larger turn separation at inj. (2) wide bucket area

 Suppress harmonic field components excited by RF cavity

Requirements

Kinetic energy	Orbit radius at straight-section	Revolution frequency
11.0 MeV	4398 mm	1557. kHz
(linac output)		
11.57 MeV	4414 mm	1591.84 kHz
(booster output)		
100 MeV	5024 mm	3845. kHz
150 MeV *1	5154 mm	4435. kHz

 Frequency
 1500-4500 kHz (Q<1)</th>

 Aperture
 >~ 750 mm
 ---> Very wide !

One candidate ; Mitsubishi-cavity

Compared to the existing cavity,

Thickness is twice .. larger COD source Impedance is half .. lower voltage

We (I) want to try another

=== Combined Cut Core (CCC) ===

Components of New RF System (planned)

Cavity ---> newly made

Magnetic cores ---> used cores of JPARC-RCS ---> main topic

Amplifier ---> 200 kW, tetrode (sleeping in KEK-PS)

Cooling System ---> direct-cooling, with oil ?

Used MA Cores of JPARC-RCS

- MA (FT-3M) core x 4 pieces (at least),
- Which was used in the JPARC-RCS RF
- Partially damaged by heat
- 850mm(OD)-375mm(ID)-35mm(Th)

Can we reuse them in our main-ring? Horizontal aperture is not enough --> Combined cut-core (???)

Combined cut-core --- basic idea ---

Combining cut-cores in order to enlarge the aperture to fit the MR

This technique enables to make a large aperture core piece by piece, without a large oven.

CCC(1) Flower type

Degree of freedom: 2

H/V aperture independently

Angular discontinuity at the boundary

CCC(2) Ribbon type

Potential problems (?)

 Simple Combined-cut-core technique has been established by J-PARC RF group.

Quality factor was controlled by changing gap-width. cf. Q=0.6(without cut), 2.0(gap 0.5mm), 10(10mm)

- 2. In our case, the two pieces coming from different cores are connected. --> Discontinuity of MA layers.
 - . angular mismatch (flower type)
 - . layers offset
 - . number of layers
- 3. Boundary treatments
 - . mechanical strength
 - . gap width control (--> larger gap increases Q)
 - . flatness

Experiments with sample cores are necessary !!

Purposes of the experiment

- Is it possible to combine cut-cores?
 - to keep it rigid?
- R proportional to (th)log(L₂/L₁),
 even for those strange configuration ?
- Does the layers discontinuity make problem ? such as heat concentration ?
- Q reduction ?

How to fix?

Or, pushing-screw from outsid? Glue ?

Choosing shape

We choose ribbon-type CCC with a=240mm.

Summary

- 1. We need to install another rf cavity.
- 2. One candidate is Mitsubishi-cavity already built, but its impedance is relatively low.
- 3. Instead, we will try a combined cut core configuration. It needs basic experiments.
- CCC may bring a strong advantage, such as reuse of damaged core, or fabricating of large-aperture core without large oven.

How to make CCC

さて、カットコア製造には次のステップを踏んでいます。全て必要がどうかは別にして、どのくらいの費用が必要かお知らせします。

- (1) コアの含浸
- (2) コアのWJ切断
- (3) WJ切断面の低粘度樹脂含浸
- (4) 切断面の研磨
- (5) 切断面のシリカコーティング

Thanks to Yoshii-sama

(1) + (2) + (3)

東芝京浜で行っていて、コア1枚当たり160万(税込み)

(2)だけの場合、

黒木コンポジット(株):トロイダル状のコア半切りするのに、1工程 5万(税抜き)

(4)

春川鉄工(株):半切りコア2枚の切断面(4カ所)を研磨仕上げするのに、約25万(税込み)

(5)

アート科学(株)(代理店)+下村漆器(株):半切りコア2枚の切断面(4カ所)を研磨仕上げするのに、約25万(税込み)

*WJ∶water-jet

 最新のカットコア製造工程は以下の通りです。

 1.コアの低粘度樹脂含浸
 :東芝

 2.コアの防錆コーティング(クロス50ミクロン):東芝

 3.WJ切断
 :東芝

 4.切断面からの低粘度樹脂含浸
 :東芝

 5.ダイヤモンド研磨
 :春川鉄工

 5.ポリシラザンコーティング
 :アート科学

 6.FRPスペーサーとRTVシリコンゴムによる防錆処理
 :J-PARC RFG

WJするには1.2.は必要でしょう。 WJはKEKでも可能です。 ダイヤモンド研磨には4.が必要ですが、樹脂を気にしなければ、春川鉄工で研磨しながら、仕上げの段階で含浸をお願いすることができます。 ポリシラザンコーティング5.14 6.5 た行うのであれば、学校もできます

安くするなら、

(1)中古コア利用

(2)KEKで WJ切断

(3)春川鉄鋼で切断面の荒削り、含浸→ダイアモンド研磨(25万)

(4)JPARC-RFG との共同で FRPスペーサーとRTVシリコンゴム

になります。

フロリのガスで配管破裂の恐れはありません、空胴内での放電などで分解・結合を繰り返し発生します。 十分な検討が必要でしょう。

Impedance of 'Ribbon-Type' core $\frac{LI^{2}}{2} = \frac{1}{2\mu} \int B^{2} dV = \frac{1}{2\mu} \left(\frac{\mu I}{\ell(r)}\right)^{2} dV$

Assumption: Flux runs along the MA layers

