

Current Status of Beam Commissioning of FFAG Accelerator at Kyushu University

Yujiro Yonemura

Contents

- 1. Overview of 150 MeV FFAG Accelerator
- 2. Development of RF acceleration system
- 3. Status of beam commissioning
 - 3.1. COD measurement
 - 3.2. Tune measurement
 - 3.3. Beam acceleration
- 4. Summary

Overview of 150 MeV FFAG Accelerator

150 MeV FF	AG accelerator has been developed for
various appli	cations, such as nuclear physics ,nuclear
engineering	and medical science.

magnet	Radial sector type (DFD-triplet)
Cell	12
K-value	7.62
Beam energy	10 ⇒125 MeV (12 ⇒ 150 MeV)
Radius	4.47 ⇒ 5.20 m
Betatron tune	H: 3.69~3.80 V: 1.14~1.30
Max. field	F-field: 1.63 T
(along orbit)	D-field: 0.78 T
Circ. freq.	1.55~4.56 MHz
Repetition	100 Hz
Mean current	1.5 nA

Injector cyclotron

Design parameters of Baby-Cyclotron

Energy	10 MeV (proton)
Туре	AVF Cyclotron
Ion Source	Internal PIG
	(LaB6 cathode)
RF Dee Voltage	40 kV
Extraction Radius	300 mm
Magnetic field	Max. 1.54 T
RF Frequency	47 MHz
	(2 nd harmonic)
Beam Current	15 μΑ

JSW Baby-Cyclotron

We are planning the irradiation experiments for low energy physics

Timing Chart of injector and FFAG

Timing Chart Preparation has been completed

In preparation

Beam commissioning log

	Jan.	The 1st turn was observed
	Feb.	Circulating beam was observed
2012	Apr. – Jun.	Maintenance period (Saving electricity)
	Jul. – Sep.	Assembling of the RF cavity Low power test of RF amplifiers
	Nov. – Dec.	Beam study of multi-turn injection
	Jan. – Mar.	Maintenance period (repair of power sources and vacuum system)
2013	Apr. – Jun.	High power test of RF amplifiers Installation of the RF cavity, High power test
	Jul.	Beam acceleration was demonstrated (~80MeV)
	Jul. – Aug.	Study of beam acceleration has been performed

KYUSHU UNIVERSITY

Contents

- 1. Overview of 150 MeV FFAG Accelerator
- 2. Development of RF acceleration system
- 3. Measurements of COD and tune
- 4. Demonstration of Beam acceleration
- 5. Summary

Power amplifier and RF cavity

Requirements of RF acceleration system

To achieve a rapid cycling acceleration of 100 Hz,

RF voltage	3 kV / 1 cavity
Number of RF cavities	2
Frequency range	1.5 – 4.2 MHz

Power dissipation of an RF cavity

$$P = \frac{V^2}{2R} = \frac{3000^2}{2 \times 200} = 25 \text{ kW} \rightarrow 12.5 \text{ kW/1core}$$

Effective Cooling system

Strong fringing field of FFAG magnets at the straight sections

Magnetic Shield of RF cavity COD correction magnets

Overview of RF acceleration system

Gap Voltage	3 .0 kV/cavity
RF frequency	1.5 – 4.2 MHz
Power tube	4CW15000E × 2
Class	B class, Push-pull
Core material	FINEMET (FT-3M)
RF output power	200 kW

Experimental setup for a power test

Overview of RF cavity

Schematic drawing of the RF cavity

Mechanical drawing

Indirect water cooling system

of the cooling plate

Magnetic Shield of RF cavity

The RF cavity should be magnetically shielded

The measured resonance frequency varied when the fringing field was greater than 150 Gauss.

Design of Magnetic Shield

Optimization of thickness of magnetic shield

The required thickness of the shield is about 40 mm or more

Shield with a thickness of 50 mm is employed for the RF cavity

COD correction magnets

Straight section (Bz = 400 Gauss) Cavity & Shield

Cavity & Shield + COD correction magnet

Current of coil	max. 980 A
Magnetic field	970 Gauss
Length	100 mm
Gap	76 mm

Installation of RF cavities

The second RF cavity will be installed in 2014.

Measured Impedance of RF cavity

To confirm the shielding effect, the impedance of the cavity was measured

The resonance frequency increase slightly The shunt impedance decreased by about 10 %

Measurement of Gap voltage

The drop of the gap voltage causes the beam loss during acceleration.

Acceleration voltage with amplitude modulation

the variation of the RF voltage has been reduced.

An additional cooling system is required

Summary of Development of RF acceleration system

Requirements

RF voltage	3 kV / 1 cavity	
Frequency range	1.5 – 4.2 MHz	Achieved !
Magnetic shielding	< 150 Gauss	
Cooling Capability	25 kW	> 20 kW (insufficient)

An additional forced-air cooling system (5 kW) is required.

tow air blowers

The Preparation of the forced-air cooling system has been completed. High Power test of the cooling system will be started.

Contents

- 1. Overview of 150 MeV FFAG Accelerator
- 2. Development of RF acceleration system
- 3. Status of beam commissioning
 - 3.1. COD measurement
 - 3.2. Tune measurement
 - 3.3. Beam acceleration
- 4. Summary

COD measurement

Because of the strong fringing filed at straight sections, the RF cavity is large source of COD.

Beam profile monitor

A position of closed orbit was obtained by analyzing beam profiles.

Layout of beam monitors

Position of beam profile monitors

COD Measurement (1)

Center of beam profile shifted to inner side.

COD Measurement (2)

Positions of the beam profile are constant. Closed orbit = 4.42 m

COD Measurements (3)

Displacements of COD is maximum

Beam profiles are employed to estimate to strength of COD correction magnets

COD measurement (4)

To estimate the strength of COD correction magnets,

COD ~ 20 mm

1248 A of current is required to compensate COD

2-5. Tune monitor

Equivalent circuit

Horizontal tune monitor

Capacitive pickup monitor R: Resistance 1 $M\Omega$

C: 540 pF (horizontal monitor) 125 pF (Vertical monitor)

Vertical tune monitor

Tune measurement (1)

Tune shift caused by COD of the RF cavity

Horizontal tune has varied from 3.61 to 3.62

Tune measurement (2)

Tune measurement (3)

K	Resonance line	Strength
	$v_y = 1.5$	Very Strong
	$v_x + v_y = 5 \ (2v_x + 2v_y = 10)$	Strong
	$v_x - 2v_y = 1$	Weak ?

Working point

1.50 ė 1.45 1.40 > 1.35 · 1.30 1.25 1.20 1.15 3.50 3.55 3.60 3.65 3.70 3.75 3.80 3.85

 ν_{x}

Working point (1)

<u>Advantage:</u> No resonance crossing

<u>Disadvantage:</u> Narrow working area between v_y =1.5 and $v_x - 2v_y$ =1

Working point (2)

<u>Advantage:</u> wide working area

<u>Disadvantage:</u> Resonance crossing of $v_x + v_y = 5$

Beam Acceleration

22nd July 2013 The beam acceleration was successfully demonstrated. (~80MeV)

Summary

The beam commissioning of the 150 MeV FFAG has gone smoothly.

Developed RF system satisfied almost all requirements. The test of the air-forced cooling system will be started.

We are now in preparation for the beam acceleration up to the final energy and the beam extraction.