

KURRI-FFAG Overview of Experimental Visit November 2013

Suzie Sheehy, ASTeC/STFC/RAL 20th November, 2013

Overview

- Aims of visit:
 - Learn about the ADSR-FFAG
 - Understand diagnostics
 - Assist in taking experimental data
 - Understand data analysis methods
 - Consider needs for high intensity experiments
 - Strengthen collaborative efforts

Measurements:

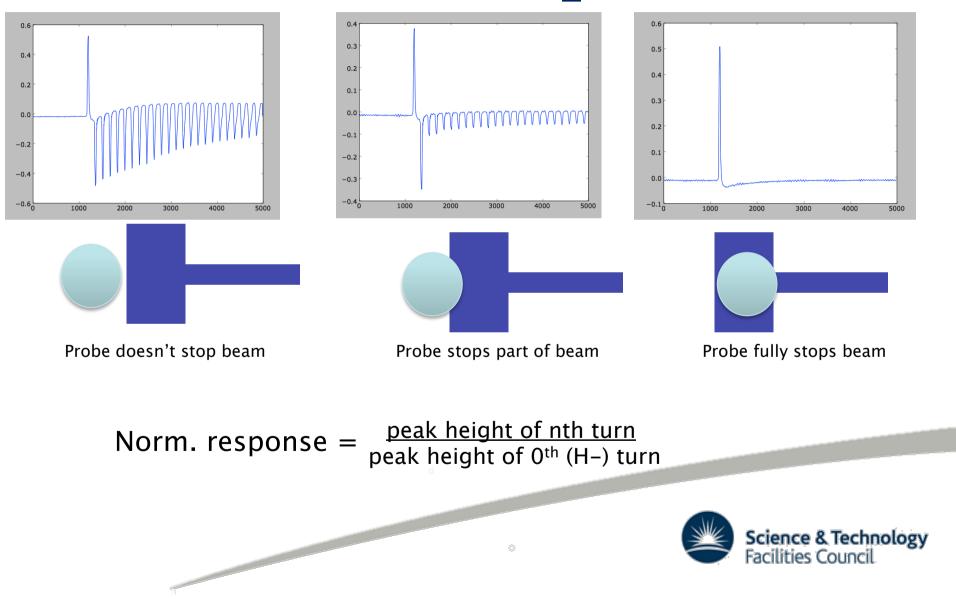
Week 1: RF Cavity OUT 'Bare Lattice Measurements'

- Vertical tune measurement
- Closed orbit measurement
 - + emittance estimate
- Installation of new corrector

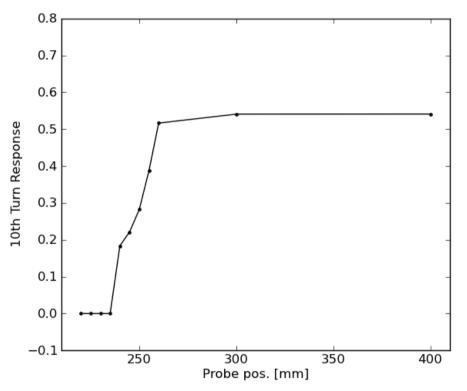
coil

Week 2: RF Cavity IN

- First look at effects of corrector with RF cavity in place
- Closed orbit measurement
 with acceleration
- Effects of new corrector coil
- (Reduce injection error?)


20/11/2013

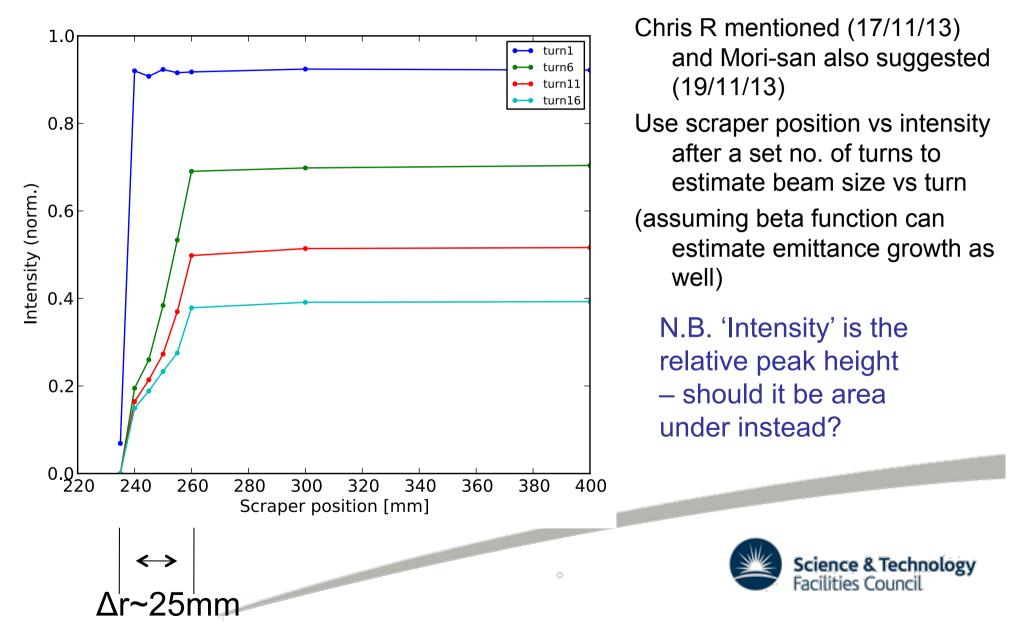
RF-Cavity Out measurements


- Important to understand 'base' lattice without effect of lacksquaremagnetic material in the RF cavity
- Compare measurement of closed orbit and tune to simulation values
- KURRI team already took data of closed orbit using probes at centre of F magnets, also wanted to confirm closed orbit position in straight section.

Closed Orbit in Straight Section - Method Data: 20131113_2

Closed Orbit in Straight Section Data: 20131113_2

y=0 intercept gives CO position Best estimate = $235 \pm 2 \text{ mm}$


NB. Unweighted linear fit gives Fit result = 233.8 mm We don't use this as it doesn't take into account the fact that the measurements <235mm had no circulating turns.

$$(r_{co} = 4180 + r_{probe})$$

Predicted CO = 4411 mmMeasured CO = $4415 \pm 2 \text{ mm}$

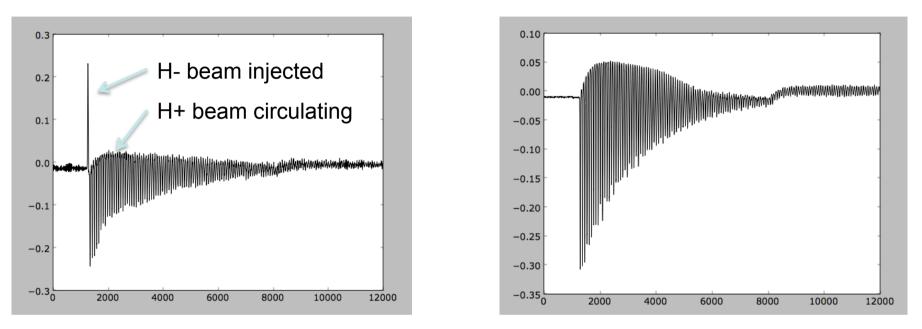
Estimate of emittance from CO data Data: 20131113_2

Emittance estimate (RF OUT) [Data: 20131113 2] $\varepsilon \approx \frac{1}{\beta} \left(\frac{\Delta r}{2}\right)^2$

Turn 1: $\Delta r < 5 mm$ Turn 6, 11, 16: Δr~25mm

 $\varepsilon = \frac{x^2}{\beta}$

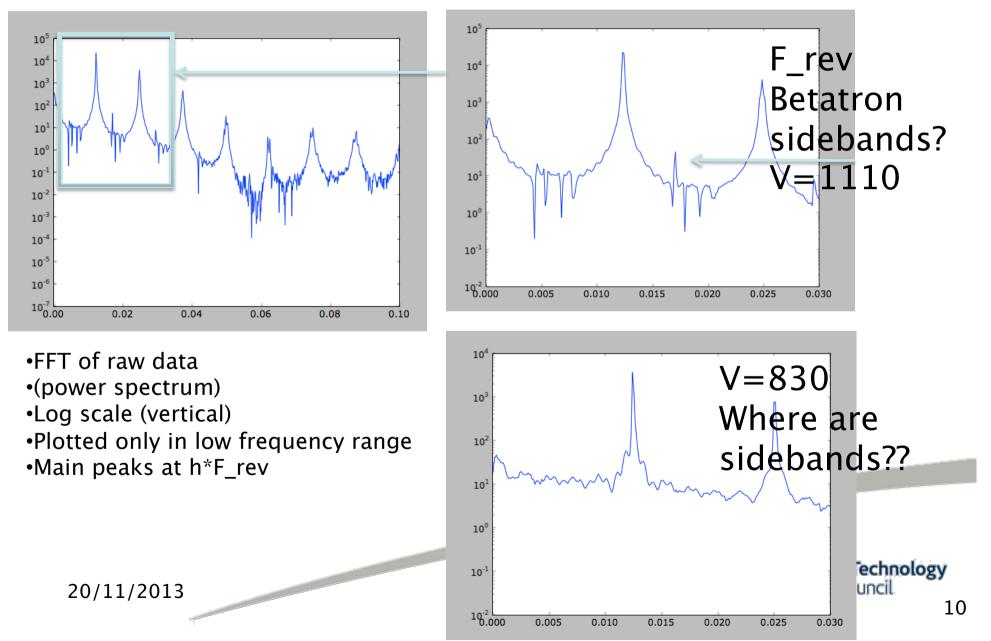
After After 'smearing out' $\varepsilon \approx \frac{1}{\beta} (\Delta r)^2$ of n turns:


Turn 1:

Turn 1[.] Assuming β =1.0m, Δ r= 5mm = 0.005m $\epsilon_x = 6.25$ pi mm mrad Turn 6, 11, 16: Assuming β =1.0m, Δ r= 25mm = 0.025m $\epsilon_x = 625$ pi.mm.mrad -> 100-fold increase in 5 turns!? (NB. not accounting for dispersion, momentum spread) If you assume this is $\mathbf{\epsilon}_{100\%}$ then $\mathbf{\epsilon}_{RMS} = (1/6)^* \mathbf{\epsilon}_{100\%}$

TO DO: same analysis for other probes & with RF), also same analysis after attempt to fix injection angle/position.

Vertical Tune – Method [Data: 20131113_1]



Same as before, but with small intentional vertical mis-steer at injection to induce coherent oscillations

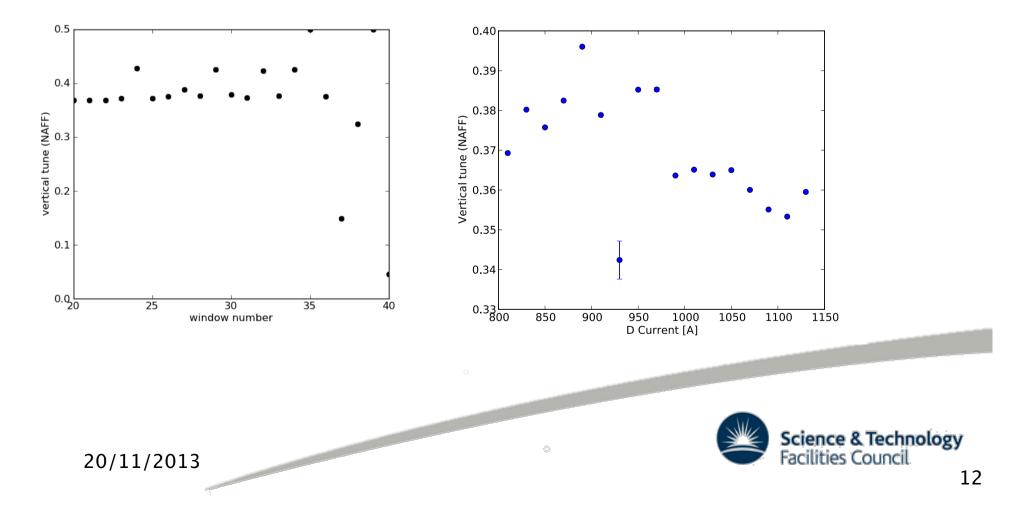
LEFT: sum signal from double plate bunch monitor located just after injection RIGHT: single plate monitor located further round the ring 20/11/2013

FFT

Vertical tune measurement

- Discussed this with RAL group
- Preliminary analysis had difficulty finding tune sidebands!
- Shinji & I discussed in detail and he has applied 'Numerical Analysis of Fundamental Frequency' method used on EMMA to it.

NAFF METHOD: determines frequency components of a signal (see eg.

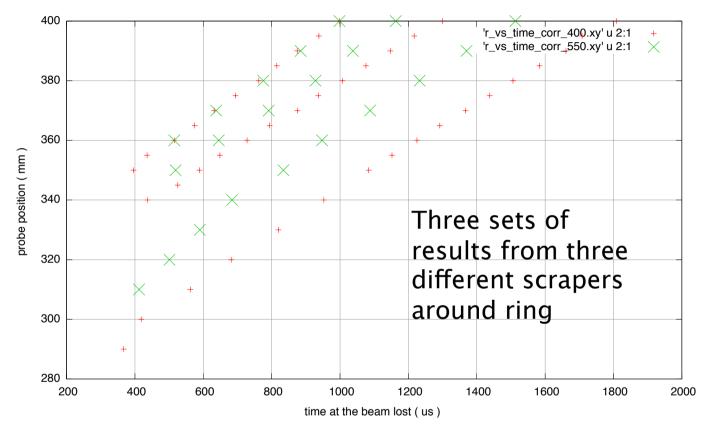

http://www.aps.anl.gov/Accelerator_Systems_Division/ Accelerator_Operations_Physics/manuals/SDDStoolkit/node78.html)

Uses a 'window' which moves along in 1 turn steps (1:41), next (2:42) etc... & NAFF method calculates a tune value for each 'window step'

NAFF Tune calculation results

- Calculated tune for windows across turn values (40 turns per window)
- Large variation especially later windows
- Using first 4 points for each value of D current (as example):

RF Cavity IN measurements


- New corrector fitted & RF cavity re-installed
- Can now measure loss of beam (in time) while keeping fixed probe position which gives some new measurement possibilities.

Test new corrector coil

New corrector CO measurement

Data: 18112013

Red: corrector current = 400A

Green: corrector current = 550A

Possible issues?

I am collecting a long list of information, field maps, drawings, measurements etc!

"What we don't know/have":

Injected energy

•Mao-san might answer this?

• The injection angle/position (mismatch can make COD measurement difficult!)

•Kuriyama-san discussed using 2 radial movers near injection point with faraday cups

• The real position (h & v) in real time - (bunch monitors have only single readout) would speed up process of correcting injection position/ angle if we could read position in 'real time'.

•This requires more amplifiers to read out bunch monitors. ££

+ time to install/test.

20/11/2013

Data storage/sharing

Shinji has created directories to organise data by date & subject on KEK server here:

http://hadron.kek.jp/FFAG/colabo/data/

(Some data in there already, thanks to Uesugi-san!)

I will upload analysis scripts, results, data description files etc ASAP.

Index of /FFA	AG/colabo/kurriexp					
Name	Last modified	Size	Description			
Parent Directory		_				
<u>20131101/</u>	18-Nov-2013 14:52	-				
<u>20131106/</u>	18-Nov-2013 14:47	-			-	
<u>20131111/</u>	18-Nov-2013 14:45	-				
<u>20131113/</u>	18-Nov-2013 14:41	-				
<u>20131115/</u>	18-Nov-2013 14:39	-		 		

Next visit?

- Discuss (all)
- March 2014?

Thankyou

- To Mori-san for inviting me & facilitating collaboration
- To Ono-san for helping organise my visit
- To Takabatake-san (Mao-san!) for looking after me and taking me sightseeing
- To Uesugi-san, Kuriyama-san, Sakamoto-san and especially to Ishi-san!
 - They have answered all my naïve questions and have made my visit a fun, productive and memorable one!

Photos from my visit are here: http://www.flickr.com/photos/ 24686524@N06/sets/ 72157637500853453/

